论文标题

学习个性化的自由党换档开始,以基于强化学习的完全自主驾驶

Learning Personalized Discretionary Lane-Change Initiation for Fully Autonomous Driving Based on Reinforcement Learning

论文作者

Liu, Zhuoxi, Wang, Zheng, Yang, Bo, Nakano, Kimihiko

论文摘要

在本文中,作者提出了一种新颖的方法,可以通过人力计算机的互动来学习为完全自动驾驶汽车的酌处道路变化启动的个性化策略。采用强化学习技术来学习如何从交通环境,自动驾驶工具的动作和车载用户反馈来启动车道变化,而不是从人类驾驶演示中学习。当用户提供积极的反馈并在负面反馈时对其进行惩罚时,提出的离线算法奖励了动作选择策略。同样,多维驾驶场景被认为代表了更现实的车道变化。结果表明,通过这种方法获得的车道变换启动模型可以重现个人车道变化策略,并且定制模型的性能(平均精度为86.1%)要比未量化模型的模型要好得多(平均精度为75.7%)。这种方法允许在完全自主驾驶过程中不断改进用户的定制,即使没有人驾驶经验,这将大大增强用户对自动驾驶汽车的高级自主权的接受。

In this article, the authors present a novel method to learn the personalized tactic of discretionary lane-change initiation for fully autonomous vehicles through human-computer interactions. Instead of learning from human-driving demonstrations, a reinforcement learning technique is employed to learn how to initiate lane changes from traffic context, the action of a self-driving vehicle, and in-vehicle user feedback. The proposed offline algorithm rewards the action-selection strategy when the user gives positive feedback and penalizes it when negative feedback. Also, a multi-dimensional driving scenario is considered to represent a more realistic lane-change trade-off. The results show that the lane-change initiation model obtained by this method can reproduce the personal lane-change tactic, and the performance of the customized models (average accuracy 86.1%) is much better than that of the non-customized models (average accuracy 75.7%). This method allows continuous improvement of customization for users during fully autonomous driving even without human-driving experience, which will significantly enhance the user acceptance of high-level autonomy of self-driving vehicles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源