论文标题
安全的大规模RIS辅助多播具有不确定的CSI:通过加速的一阶算法最大化的能源效率
Secure Massive RIS aided Multicast with Uncertain CSI: Energy-Efficiency Maximization via Accelerated First-Order Algorithms
论文作者
论文摘要
可重新配置的智能表面(RIS)有可能通过重新配置无线传播环境来显着提高网络安全性传输性能。但是,由于窃听者的被动性和RI带来的级联通道,在基站,窃听的通道状态信息是不完美的。在通道不确定性下,由于难以用耦合变量处理概率约束,因此目前未知安全传输的最佳相移,功率分配和传输速率设计。为了填补这一空白,本文提出了能源有效的安全传输设计问题,同时纳入了概率约束。通过转换概率约束并解耦变量,可以通过执行凹入式convex程序和半决赛松弛技术来解决安全的能效最大化问题。为了扩展大规模天线的解决方案并反映元素方案,进一步提出了一种具有低复杂性的加速一阶算法。显示结果表明,所提出的加速一阶算法与常规方法相同,但在计算时间中至少可以节省两个级数。此外,与随机相移,固定相换档和RIS的基线方案相比,最终的RIS辅助固定传输可显着提高能效,而无视CSI不确定性。
Reconfigurable intelligent surface (RIS) has the potential to significantly enhance the network secure transmission performance by reconfiguring the wireless propagation environment. However, due to the passive nature of eavesdroppers and the cascaded channel brought by the RIS, the eavesdroppers' channel state information is imperfectly obtained at the base station. Under the channel uncertainty, the optimal phase-shift, power allocation, and transmission rate design for secure transmission is currently unknown due to the difficulty of handling the probabilistic constraint with coupled variables. To fill this gap, this paper formulates a problem of energy-efficient secure transmission design while incorporating the probabilistic constraint. By transforming the probabilistic constraint and decoupling the variables, the secure energy efficiency maximization problem can be solved via alternatively executing concave-convex procedure and semidefinite relaxation technique. To scale the solution to massive antennas and reflecting elements scenario, an accelerated first-order algorithm with low complexity is further proposed.Simulation results show that the proposed accelerated first-order algorithm achieves identical performance to the conventional method but saves at least two orders of magnitude in computation time. Moreover, the resultant RIS aided secure transmission significantly improves the energy efficiency compared to baseline schemes of random phase-shift, fixed phase-shift, and RIS ignoring CSI uncertainty.