论文标题
抽象的Birman-Schinginger原理和光谱稳定性
The abstract Birman-Schwinger principle and spectral stability
论文作者
论文摘要
我们讨论了摘要的Birman-Schwinger原则,以研究以分解形式受到小型非自身伴随扰动的自我接合操作员的光谱。特别是,我们扩展并部分改善了Kato确保光谱稳定性的经典结果。作为应用程序,我们在欧几里得空间中重新访问了Schrödinger和Dirac Operators的已知结果,并为Schrödinger操作员在三维双曲线空间中建立了新的结果。
We discuss abstract Birman-Schwinger principles to study spectra of self-adjoint operators subject to small non-self-adjoint perturbations in a factorised form. In particular, we extend and in part improve a classical result by Kato which ensures spectral stability. As an application, we revisit known results for Schrödinger and Dirac operators in Euclidean spaces and establish new results for Schrödinger operators in three-dimensional hyperbolic space.