论文标题

弱解决方案对椭圆方程的界限和Hölder连续性涉及可变指数和关键增长

The boundedness and Hölder continuity of weak solutions to elliptic equations involving variable exponents and critical growth

论文作者

Ho, Ky, Kim, Yun-Ho, Winkert, Patrick, Zhang, Chao

论文摘要

在本文中,我们证明了准线性椭圆问题的界限和Hölder连续性,这些问题涉及均匀的Dirichlet和非均匀的Neumann边界条件的可变指数。我们作品的新颖性是,即使在边界上我们允许临界增长,因此我们弥补了Fan-Zhao [非线性肛门的论文中的差距。 36(1999),没有。 3,295--318。]和Winkert-Zacher [离散连续。 dyn。系统。 ser。 S 5(2012),没有。 4,865---878。]其中排除了关键案件。我们的方法基于De Giorgi迭代技术的修改版本以及本地化方法。由于我们的结果,$ c^{1,α} $ - 规律性立即跟随。

In this paper we prove the boundedness and Hölder continuity of quasilinear elliptic problems involving variable exponents for a homogeneous Dirichlet and a nonhomogeneous Neumann boundary condition, respectively. The novelty of our work is the fact that we allow critical growth even on the boundary and so we close the gap in the papers of Fan-Zhao [Nonlinear Anal. 36 (1999), no. 3, 295--318.] and Winkert-Zacher [Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 4, 865--878.] in which the critical cases are excluded. Our approach is based on a modified version of De Giorgi's iteration technique along with the localization method. As a consequence of our results, the $C^{1,α}$-regularity follows immediately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源