论文标题

太阳柱区域的模拟中的涡流流性能:它们在色圈加热中的作用的证据

Vortex Flow Properties in Simulations of Solar Plage Region: Evidence for their role in chromospheric heating

论文作者

Yadav, Nitin, Cameron, Robert H., Solanki, Sami K.

论文摘要

在太阳大气中的各种空间和时间尺度上都存在涡流流。已经提出了小规模的涡旋在太阳大气中的能源运输中发挥重要作用。但是,由于观测值的空间分辨率有限,它们的物理特性仍然很少理解。我们旨在使用数值模拟探索和分析磁通管内部小规模涡旋的物理特性,并研究它们是否有助于加热材料区域中的染色体。使用三维(3D)辐射磁流失动力学(MHD)模拟代码“ Muram”,我们对单极太阳柱区域进行数值模拟。为了检测和隔离涡旋,我们使用旋转强度标准,然后选择液体以大于一定阈值的角速度旋转的位置。我们专注于小规模,因为它们是最强的,并且携带大部分能量。我们探索物理量的空间概况,即。这些涡旋内部的密度,水平速度等。此外,为了理解其一般特征,进行了统计研究。磁通管具有复杂的丝状下结构,具有丰富的小规模涡流。在涡流之间的界面上,形成强电流板,可能会消散和加热太阳能球。从统计学上讲,涡旋具有更高的密度和更高的温度。我们得出的结论是,在太阳板区域中,小规模的涡旋是无处不在的,它们是较密集,更热的结构,会导致色球加热,可能是由于在其界面上形成的当前纸张而耗散。

Vortex-flows exist across a broad range of spatial and temporal scales in the solar atmosphere. Small-scale vortices have been proposed to play an important role in energy transport in the solar atmosphere. However, their physical properties remain poorly understood due to the limited spatial resolution of the observations. We aim to explore and analyze the physical properties of small-scale vortices inside magnetic flux tubes using numerical simulations, and to investigate whether they contribute to heating the chromosphere in a plage region. Using the three-dimensional (3D) radiative magnetohydrodynamic (MHD) simulation code 'MURaM', we perform numerical simulations of a unipolar solar plage region. To detect and isolate vortices, we use the Swirling Strength criterion and select the locations where the fluid is rotating with an angular velocity greater than a certain threshold. We concentrate on small-scale as they are the strongest and carry most of the energy. We explore the spatial profiles of physical quantities viz. density, horizontal velocity, etc. inside these vortices. Moreover, to apprehend their general characteristics, a statistical investigation is performed. Magnetic flux tubes have a complex filamentary substructure harbouring an abundance of small-scale vortices. At the interfaces between vortices strong current sheets are formed that may dissipate and heat the solar chromosphere. Statistically, vortices have higher densities and higher temperatures than the average values at the same geometrical height in the chromosphere. We conclude that small-scale vortices are ubiquitous in solar plage regions, and they are denser and hotter structures that contribute to chromospheric heating, possibly by dissipation of the current sheets formed at their interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源