论文标题

厚度控制的卤化物钙钛矿纳米片之间的非辐射能量转移

Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets

论文作者

Singldinger, Andreas, Gramlich, Moritz, Gruber, Christoph, Lampe, Carola, Urban, Alexander S.

论文摘要

尽管对光电学表现出了巨大的希望,但卤化钙钛矿基于纳米结构的设备的商业化受到了低效的电激发和强烈的激发量结合能的阻碍。尽管通过Förster共振能量转移(FRET)在能量量化系统中运输激子可能是有效的替代方法,但卤化物离子迁移使级联结构的实现变得困难。在这里,我们展示了如何通过在基于二维CSPBBR3的纳米片(NPLS)中利用明显的量子限制效应来获得这些。在两个预定厚度的NPL的薄膜中,我们观察到增强的受体光致发光(PL)发射和供体PL寿命降低。这表明一个FRET介导的过程受益于NPL的结构参数。我们确定相应的传输速率高达k_fret = 0.99 ns^-1,效率接近η_fret= 70%。我们还表明,在其他厚度的钙钛矿NPL之间发生fret。因此,这种策略可能会导致量身定制的能量级联纳米结构,以改善光电设备。

Despite showing great promise for optoelectronics, the commercialization of halide perovskite nanostructure-based devices is hampered by inefficient electrical excitation and strong exciton binding energies. While transport of excitons in an energy-tailored system via Förster resonance energy transfer (FRET) could be an efficient alternative, halide ion migration makes the realization of cascaded structures difficult. Here, we show how these could be obtained by exploiting the pronounced quantum confinement effect in two dimensional CsPbBr3 based nanoplatelets (NPls). In thin films of NPls of two predetermined thicknesses, we observe an enhanced acceptor photoluminescence (PL) emission and a decreased donor PL lifetime. This indicates a FRET-mediated process, benefitted by the structural parameters of the NPls. We determine corresponding transfer rates up to k_FRET=0.99 ns^-1 and efficiencies of nearly η_FRET=70%. We also show FRET to occur between perovskite NPls of other thicknesses. Consequently, this strategy could lead to tailored, energy cascade nanostructures for improved optoelectronic devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源