论文标题
传感器系统中的智能异常检测:多镜头评论
Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review
论文作者
论文摘要
异常检测与确定明显偏离预期行为的数据模式有关。这是一个重要的研究问题,由于其广泛的应用领域,从数据分析到电子健康,网络安全,预测性维护,预防故障和工业自动化。在本文中,我们回顾了可能采用的最先进方法,这些方法可用于检测传感器系统的特定区域中的异常情况,这在信息融合,数据量,数据速度和网络/能源效率方面构成了艰巨的挑战,但最紧迫的挑战。在这种情况下,鉴于需要在受约束的环境中找到计算能量准确性的权衡,异常检测是一个特别困难的问题。我们将分类法分类从传统技术(统计方法,时间序列分析,信号处理等)到数据驱动的技术(有监督的学习,强化学习,深度学习等)。我们还研究了不同建筑环境(云,雾,边缘)对传感器生态系统的影响。评论指出了最有希望的智能方法,并指出了一组有趣的开放问题和挑战。
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour. This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation. Herein, we review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems, which poses hard challenges in terms of information fusion, data volumes, data speed, and network/energy efficiency, to mention but the most pressing ones. In this context, anomaly detection is a particularly hard problem, given the need to find computing-energy accuracy trade-offs in a constrained environment. We taxonomize methods ranging from conventional techniques (statistical methods, time-series analysis, signal processing, etc.) to data-driven techniques (supervised learning, reinforcement learning, deep learning, etc.). We also look at the impact that different architectural environments (Cloud, Fog, Edge) can have on the sensors ecosystem. The review points to the most promising intelligent-sensing methods, and pinpoints a set of interesting open issues and challenges.