论文标题
与自适应增强的图形对比度学习
Graph Contrastive Learning with Adaptive Augmentation
论文作者
论文摘要
最近,对比度学习(CL)已成为无监督图表学习的成功方法。大多数图CL方法首先在输入图上执行随机增强,以获得两个图表,并最大化两种视图中表示的一致性。尽管图CL方法的发展繁荣,但图形增强方案的设计 - CL中的关键组成部分 - 仍然很少探索。我们认为,数据增强方案应保留图形的内在结构和属性,这将迫使模型学习对对不重要的节点和边缘扰动不敏感的表示。但是,大多数现有的方法采用统一的数据增强方案,例如均匀的掉落边缘和均匀的调整功能,从而导致次优性能。在本文中,我们提出了一种新型的图形对比表示学习方法,并具有自适应增强,该方法结合了图形的拓扑和语义方面的各种先验。具体而言,在拓扑层面上,我们根据节点中心度措施设计增强方案,以突出重要的结缔结构。在节点属性级别上,我们通过在不重要的节点特征中添加更多噪声来损坏节点功能,以强制执行模型以识别基本的语义信息。我们在各种现实数据集上进行了节点分类的广泛实验。实验结果表明,我们提出的方法始终超过现有的最新基线,甚至超过了一些受监督的对应物,这证实了提议的对比框架和自适应增强的有效性。
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.