论文标题
个人异质性的深度学习
Deep Learning for Individual Heterogeneity
论文作者
论文摘要
本文将深层神经网络(DNN)整合到结构性经济模型中,以提高灵活性并捕获丰富的异质性,同时保持可解释性。经济结构和机器学习是经验模型中的补充,而不是替代品:DNN提供了学习复杂,非线性异质性模式的能力,而结构模型则确保估计值保持可解释且适合决策和政策分析。我们从标准的参数结构模型开始,然后将其参数丰富到可观察到的完全灵活的功能中,该功能是使用特定的DNN体系结构估算的,该结构反映了经济模型。我们通过研究消费者选择中的需求估计来说明我们的框架。我们表明,通过丰富标准需求模型,我们可以捕获丰富的异质性,并进一步利用这种异质性来创建个性化的定价策略。没有经济结构,这种类型的优化是不可能的,但是如果没有机器学习,就不可能是异质的。最后,我们在提出的方法中提供了每个步骤的理论理由。我们首先建立了我们结构深度学习方法的非反应界限和收敛速率。接下来,一种新颖而相当普遍的影响功能计算允许在各种情况下通过双重机器学习可行推断。这些结果在许多其他情况下可能引起人们的关注,因为它们概括了先前的工作。
This paper integrates deep neural networks (DNNs) into structural economic models to increase flexibility and capture rich heterogeneity while preserving interpretability. Economic structure and machine learning are complements in empirical modeling, not substitutes: DNNs provide the capacity to learn complex, non-linear heterogeneity patterns, while the structural model ensures the estimates remain interpretable and suitable for decision making and policy analysis. We start with a standard parametric structural model and then enrich its parameters into fully flexible functions of observables, which are estimated using a particular DNN architecture whose structure reflects the economic model. We illustrate our framework by studying demand estimation in consumer choice. We show that by enriching a standard demand model we can capture rich heterogeneity, and further, exploit this heterogeneity to create a personalized pricing strategy. This type of optimization is not possible without economic structure, but cannot be heterogeneous without machine learning. Finally, we provide theoretical justification of each step in our proposed methodology. We first establish non-asymptotic bounds and convergence rates of our structural deep learning approach. Next, a novel and quite general influence function calculation allows for feasible inference via double machine learning in a wide variety of contexts. These results may be of interest in many other contexts, as they generalize prior work.