论文标题

嵌套的司羊毛人,用于降低尺寸的应用

Nested Grassmannians for Dimensionality Reduction with Applications

论文作者

Yang, Chun-Hao, Vemuri, Baba C.

论文摘要

最近,在降低维度降低的背景下,研究了Riemannian歧管中的嵌套结构,以替代流行的主要测量分析(PGA)技术,例如主要的嵌套球。在本文中,我们提出了一个新的框架,用于构建一系列均匀的riemannian歧管序列。统一的riemannian流形的常见例子包括$ n $ sphere,stiefel歧管,格拉斯曼歧管等。特别是,我们专注于将提议的框架应用于格拉斯曼多种多样,从而引起了嵌套的格拉曼尼亚人(NG)。遇到格拉斯曼流形的一个重要应用是平面形状分析。具体而言,每个平面(2D)形状可以表示为复杂的投影空间中的一个点,这是一个复杂的基层歧管。我们框架的一些显着特征是:(i)它明确利用了统一的riemannian歧管的几何形状,并且(ii)嵌套的下二维亚策略不必是地球上的。通过提出的NG结构,我们分别为受监督和无监督的维度减少问题开发算法。通过模拟研究和实际数据实验将提出的算法与PGA进行比较,与PGA相比,表达方差的比例更高。

In the recent past, nested structures in Riemannian manifolds has been studied in the context of dimensionality reduction as an alternative to the popular principal geodesic analysis (PGA) technique, for example, the principal nested spheres. In this paper, we propose a novel framework for constructing a nested sequence of homogeneous Riemannian manifolds. Common examples of homogeneous Riemannian manifolds include the $n$-sphere, the Stiefel manifold, the Grassmann manifold and many others. In particular, we focus on applying the proposed framework to the Grassmann manifold, giving rise to the nested Grassmannians (NG). An important application in which Grassmann manifolds are encountered is planar shape analysis. Specifically, each planar (2D) shape can be represented as a point in the complex projective space which is a complex Grass-mann manifold. Some salient features of our framework are: (i) it explicitly exploits the geometry of the homogeneous Riemannian manifolds and (ii) the nested lower-dimensional submanifolds need not be geodesic. With the proposed NG structure, we develop algorithms for the supervised and unsupervised dimensionality reduction problems respectively. The proposed algorithms are compared with PGA via simulation studies and real data experiments and are shown to achieve a higher ratio of expressed variance compared to PGA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源