论文标题

圆环束,自动形态和T偶性

Torus Bundles, Automorphisms and T-Duality

论文作者

Mahmood, Hasan, Reid-Edwards, R. A.

论文摘要

在现代背景下,我们基于世界表操作员代数的自动形态,重新考虑了一些T偶尔的旧结构。众所周知,在圆环压缩的模量空间中的特殊点上,目标空间规对称性可能会增强。远离此类点,对称性被打破,而T偶性可以理解为一种残留的离散仪表对称性,可在这种破裂中幸存下来。利用在字符串背景空间上的连接工作的工作,我们讨论了如何将此框架概括为T二维的几何和非几何背景,这些框架不是字符串理论的完整解决方案,但可能在精确背景中起重要作用。在此过程中,我们找到了一个有趣的代数结构,并讨论了其与加倍几何形状的关系。在这种情况下,我们评论非等法T偶性。

We reconsider some older constructions of T-duality, based on automorphisms of the worldsheet operator algebra, in a modern context. It has been long known that at special points in the moduli space of torus compactifications, the target space gauge symmetry may be enhanced. Away from such points the symmetry is broken and T-duality may be understood as a residual discrete gauge symmetry that survives this breaking. Drawing on work on connections over the space of string backgrounds, we discuss how to generalise this framework for T-duality to geometric and non-geometric backgrounds that are not full solutions of string theory, but may play an important role in exact backgrounds. Along the way we find an interesting algebraic structure and discuss its relationship with doubled geometry. We comment on non-isometric T-duality in this context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源