论文标题
野生局部结构的谎言代数
Wild Local Structures of Automorphic Lie Algebras
论文作者
论文摘要
我们使用函数的联想代数的代表来研究自动层谎言代数。这为汽车谎言代数提供了一个降序的理想链,该链用于证明它是野生表示类型的。我们表明,自动谎言代数的相关商与扭曲的截短多项式电流代数同构。当在构造中使用一个简单的谎言代数时,这使我们能够用仿射kac-moody代数来描述自动谎言代数的局部谎言结构。
We study automorphic Lie algebras using a family of evaluation maps parametrised by the representations of the associative algebra of functions. This provides a descending chain of ideals for the automorphic Lie algebra which is used to prove that it is of wild representation type. We show that the associated quotients of the automorphic Lie algebra are isomorphic to twisted truncated polynomial current algebras. When a simple Lie algebra is used in the construction, this allows us to describe the local Lie structure of the automorphic Lie algebra in terms of affine Kac-Moody algebras.