论文标题
数据驱动的分布式控件:动态网络中的虚拟参考反馈调整
Data-driven distributed control: Virtual reference feedback tuning in dynamic networks
论文作者
论文摘要
在本文中,考虑了从数据合成分布式控制器的问题,目的是优化模型引用控制标准。我们建立了一个明确的理想分布式控制器,该控制器可以解决结构化参考模型的模型参考控制问题。根据从互连系统收集的输入输出数据,构建了虚拟实验设置,从而导致网络识别问题。我们制定了一个预测错误识别标准,该标准具有与模型参考标准相同的全局最佳标准,当控制器类包含理想的分布式控制器时。在九个子系统的学术示例网络上说明了开发的分布式控制器合成方法,并分析了控制器互连结构对实现的闭环性能的影响。
In this paper, the problem of synthesizing a distributed controller from data is considered, with the objective to optimize a model-reference control criterion. We establish an explicit ideal distributed controller that solves the model-reference control problem for a structured reference model. On the basis of input-output data collected from the interconnected system, a virtual experiment setup is constructed which leads to a network identification problem. We formulate a prediction-error identification criterion that has the same global optimum as the model-reference criterion, when the controller class contains the ideal distributed controller. The developed distributed controller synthesis method is illustrated on an academic example network of nine subsystems and the influence of the controller interconnection structure on the achieved closed-loop performance is analyzed.