论文标题

动态不连贯的表面内态

Dynamically incoherent surface endomorphisms

论文作者

Hall, Layne, Hammerlindl, Andy

论文摘要

我们明确地在任何线性扩展映射的同型类别中,用整数特征值构建了$ \ mathbb {t}^2 $的动态不连贯的内态性内态。这些示例表现出沿着许多圆圈的中心曲线的分支,因此表现出一种连贯性的形式,这些形式尚未观察到可逆系统。

We explicitly construct a dynamically incoherent partially hyperbolic endomorphisms of $\mathbb{T}^2$ in the homotopy class of any linear expanding map with integer eigenvalues. These examples exhibit branching of centre curves along countably many circles, and thus exhibit a form of coherence that has not been observed for invertible systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源