论文标题
磁旋转恒星进化的建模I.方法和第一个应用
Modeling of Magneto-Rotational Stellar Evolution I. Method and first applications
论文作者
论文摘要
尽管磁场长期以来一直被认为对于磁非分类恒星和紧凑型恒星的演变很重要,但近年来已经很明显,实际上所有恒星都受到深远的影响。对于它们的内部角动量分布尤其如此,但是磁场也可能影响内部混合过程,甚至影响恒星的命运。我们为恒星进化模拟提出了一个新的框架,其中磁场,旋转,质量损失以及恒星密度和温度分布的变化之间的相互作用得到了自我对抗。对于与恒星旋转轴对称的平均大型恒星磁场,我们通过应用Alfven定理,从平均场MHD方程中得出了1D进化方程,并通过施加Alfven定理,并通过施加了由于LoreNtz力而导致的角动量传递的保守形式。我们将形式主义实施到数值恒星演变代码中,并模拟1.5 m $ _ \ odot $ start的磁性旋转演变。 $ω$效应的帮助的洛伦兹力施加了通过磁化培养基传播的扭转Alfven波,从而导致Alfven时间尺度内的近距离旋转。我们具有不同初始自旋和B场的模型可以重现AP/BP恒星的主要观察到的特性。计算持续到红色巨型政权显示出明显的核心 - 核心耦合,该核心耦合重现了由小星座观测确定的核心和表面旋转周期。
While magnetic fields have long been considered to be important for the evolution of magnetic non-degenerate stars and compact stars, it has become clear in recent years that actually all of the stars are deeply affected. This is particularly true regarding their internal angular momentum distribution, but magnetic fields may also influence internal mixing processes and even the fate of the star. We propose a new framework for stellar evolution simulations, in which the interplay between magnetic field, rotation, mass loss, and changes in the stellar density and temperature distributions are treated self-consistently. For average large-scale stellar magnetic fields which are symmetric to the axis of rotation of the star, we derive 1D evolution equations for the toroidal and poloidal components from the mean-field MHD equation by applying Alfven's theorem, and a conservative form of the angular momentum transfer due to the Lorentz force is formulated. We implement our formalism into a numerical stellar evolution code and simulate the magneto-rotational evolution of 1.5 M$_\odot$ stars. The Lorentz force aided by the $Ω$ effect imposes torsional Alfven waves propagating through the magnetized medium, leading to near-rigid rotation within the Alfven timescale. Our models with different initial spins and B-fields can reproduce the main observed properties of Ap/Bp stars. Calculations continued to the red-giant regime show a pronounced core-envelope coupling, which reproduces the core and surface rotation periods determined by asteroseismic observations.