论文标题
四极时矩,边缘极化和拐角处的指控
Quadrupole moments, edge polarizations, and corner charges in the Wannier representation
论文作者
论文摘要
偏振的现代理论允许确定截短的一维绝缘子的宏观末端电荷,即单独了解散装特性,Modulo电荷量子$ e $。一个更微妙的问题是,仅凭批量和边缘属性的知识,确定了二维绝缘子Modulo $ e $的角度电荷。尽管以前的作品倾向于在存在对称性的情况下关注角度电荷的量化,但在这里我们关注的情况是,唯一的散装对称性是反转的情况,因此角电荷可以采用任意值。我们开发了一种基于Wannier的形式主义,该形式主义只能根据两个不同方向的色带几何形状计算,可以预测转角电荷,Modulo $ E $。我们阐明了内部四极和边缘偶极子贡献对用于构建Wannier函数的规格的依赖性,发现尽管这些函数是单独的量规依赖性的,但它们的总和是与规格无关的。从中,我们得出的结论是,边缘极化本身并不是一个物理观察的,并且任何基于瓦尼尔的计算角电荷的方法都需要在整个计算过程中使用公共量规。我们使用两个Wannier构造程序满足了这一约束,一种基于投影,另一个基于量规固定的嵌套瓦尼尔结构。我们通过证明对几种紧密结合模型的角度电荷的正确预测来验证我们的理论。我们评论我们的方法与以前出现在文献中的关系之间的关系。
The modern theory of polarization allows for the determination of the macroscopic end charge of a truncated one-dimensional insulator, modulo the charge quantum $e$, from a knowledge of bulk properties alone. A more subtle problem is the determination of the corner charge of a two-dimensional insulator, modulo $e$, from a knowledge of bulk and edge properties alone. While previous works have tended to focus on the quantization of corner charge in the presence of symmetries, here we focus on the case that the only bulk symmetry is inversion, so that the corner charge can take arbitrary values. We develop a Wannier-based formalism that allows the corner charge to be predicted, modulo $e$, only from calculations on ribbon geometries of two different orientations. We elucidate the dependence of the interior quadrupole and edge dipole contributions upon the gauge used to construct the Wannier functions, finding that while these are individually gauge-dependent, their sum is gauge-independent. From this we conclude that the edge polarization is not by itself a physical observable, and that any Wannier-based method for computing the corner charge requires the use of a common gauge throughout the calculation. We satisfy this constraint using two Wannier construction procedures, one based on projection and another based on a gauge-consistent nested Wannier construction. We validate our theory by demonstrating the correct prediction of corner charge for several tight-binding models. We comment on the relations between our approach and previous ones that have appeared in the literature.