论文标题

在Lorentz不变的复杂标量字段

On Lorentz invariant complex scalar fields

论文作者

Rigolin, Gustavo

论文摘要

我们获得了Lorentz协变量方程,其复杂的波函数根据以下规则在Lorentz增强下转换,$ψ(x)\ rightArrow e^{\ frac {i} {\ hbar} {\ hbar} f(x)} f(x)}ψ(x)$。我们表明,时空相关的相位$ f(x)$是与非相关性施罗德林格波函数相关的相关的相对论扩展,当它经过伽利利亚转换时。然后,我们通过假设$ψ(x)$根据适当的洛伦兹变换(Boosts或空间旋转)在上述规则下转换来概括先前的分析。这是与洛伦兹不变的物理理论兼容的最通用的转换规则,其可观察到的是$ψ(x)$的双​​线性函数。我们使用以前的波程来描述几种物理系统。特别是,我们解决了两个粒子的结合状态和散射问题,这些粒子在电磁和重力上都相互作用(静态电磁和重力场)。前一种相互作用是通过最小耦合处方建模的,而后者则通过外部电位进入。我们还制定了与这些Lorentz协变波方程相关的逻辑上一致的经典和量子场理论。我们表明,只要我们有自我相互作用的术语,就可以使这些理论等同于克莱因·戈登理论,而不会破坏其lorentz的不变性,或者如果我们通过最小的耦合处方引入电磁相互作用。对于破坏洛伦兹不变性的相互作用,我们表明目前的理论表明颗粒和反粒子在衰减过程中的行为有所不同,后者更加不稳定。这表明洛伦兹破坏不变性的相互作用与物质抗对称性问题之间可能存在联系。

We obtain a Lorentz covariant wave equation whose complex wave function transforms under a Lorentz boost according to the following rule, $Ψ(x)\rightarrow e^{\frac{i}{\hbar}f(x)}Ψ(x)$. We show that the spacetime dependent phase $f(x)$ is the most natural relativistic extension of the phase associated with the transformation rule for the non-relativistic Schroedinger wave function when it is subjected to a Galilean transformation. We then generalize the previous analysis by postulating that $Ψ(x)$ transforms according to the above rule under proper Lorentz transformations (boosts or spatial rotations). This is the most general transformation rule compatible with a Lorentz invariant physical theory whose observables are bilinear functions of the field $Ψ(x)$. We use the previous wave equations to describe several physical systems. In particular, we solve the bound state and scattering problems of two particles which interact both electromagnetically and gravitationally (static electromagnetic and gravitational fields). The former interaction is modeled via the minimal coupling prescription while the latter enters via an external potential. We also formulate logically consistent classical and quantum field theories associated with these Lorentz covariant wave equations. We show that it is possible to make those theories equivalent to the Klein-Gordon theory whenever we have self-interacting terms that do not break their Lorentz invariance or if we introduce electromagnetic interactions via the minimal coupling prescription. For interactions that break Lorentz invariance, we show that the present theories imply that particles and antiparticles behave differently at decaying processes, with the latter being more unstable. This suggests a possible connection between Lorentz invariance-breaking interactions and the matter-antimatter asymmetry problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源