论文标题

大型数值模拟的深神经网络替代物的有意义的不确定性

Meaningful uncertainties from deep neural network surrogates of large-scale numerical simulations

论文作者

Anderson, Gemma J., Gaffney, Jim A., Spears, Brian K., Bremer, Peer-Timo, Anirudh, Rushil, Thiagarajan, Jayaraman J.

论文摘要

大规模的数值模拟在许多科学学科中使用,以促进实验发展并提供有关潜在物理过程的见解,但它们具有巨大的计算成本。深度神经网络(DNN)可以用作高度精确的替代模型,具有处理多种数据类型的能力,为预测和许多其他下游任务提供了巨大的加速。这些替代物的重要用例是模拟与实验之间的比较。预测不确定性估计对于使这种比较有意义,但是标准DNN并未提供它们。在这项工作中,我们将DNN的基本要求定义为对科学应用有用,并展示了一种普遍的变异推理方法,以配备来自对惯性限制融合模拟的DNN替代模型的标量和图像数据的预测,并具有校准的贝叶斯不确定性。至关重要的是,这些不确定性是可解释的,有意义的,并且可以保留预测数量的物理相关。

Large-scale numerical simulations are used across many scientific disciplines to facilitate experimental development and provide insights into underlying physical processes, but they come with a significant computational cost. Deep neural networks (DNNs) can serve as highly-accurate surrogate models, with the capacity to handle diverse datatypes, offering tremendous speed-ups for prediction and many other downstream tasks. An important use-case for these surrogates is the comparison between simulations and experiments; prediction uncertainty estimates are crucial for making such comparisons meaningful, yet standard DNNs do not provide them. In this work we define the fundamental requirements for a DNN to be useful for scientific applications, and demonstrate a general variational inference approach to equip predictions of scalar and image data from a DNN surrogate model trained on inertial confinement fusion simulations with calibrated Bayesian uncertainties. Critically, these uncertainties are interpretable, meaningful and preserve physics-correlations in the predicted quantities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源