论文标题

在随机图上使用随机顺序吸附对Rydberg气体进行建模

Modeling Rydberg Gases using Random Sequential Adsorption on Random Graphs

论文作者

Rutten, Daan, Sanders, Jaron

论文摘要

强烈相互作用的超电量Rydberg气体的统计数据受两个因素的相互作用的控制:由阻断效应引起的几何限制和量子机械效应。为了阐明它们在Rydberg气体统计数据中的相对作用,我们比较了本文中的三个模型:一个量子机械模型,描述了Rydberg Gas中的激发动力学,这是在随机几何图(RGG)(RGG)上的随机顺序吸附(RSA)过程,以及在分解的随机随机交叉图(DRIG)上的RSA过程。后一个模型是新的,是指选择其他两个随机图的混合物的特定子图。与以前的两个模型相反,它为严格的数学分析提供了自身的诉讼。它是专门为具有RGG的特定结构属性而构建的。我们为其建立了描述Rydberg原子数量的时间进化的流体限制,并以数值方式表明,基于ERDOS-RENYI随机图(Errg)上的RSA过程,该表达在更广泛的粒子密度范围内保持准确。最后,我们还提出了一种新的启发式图,使用随机图提供了递归,以描述Rydberg气体的归一化配对函数。我们的结果表明,即使没有耗散,长期尺度上,统计数据受到阻断效应引起的几何限制的影响最大,而在短时间内,统计量受量子机械效应的影响最大。

The statistics of strongly interacting, ultracold Rydberg gases are governed by the interplay of two factors: geometrical restrictions induced by blockade effects, and quantum mechanical effects. To shed light on their relative roles in the statistics of Rydberg gases, we compare three models in this paper: a quantum mechanical model describing the excitation dynamics within a Rydberg gas, a Random Sequential Adsorption (RSA) process on a Random Geometric Graph (RGG), and a RSA process on a Decomposed Random Intersection Graph (DRIG). The latter model is new, and refers to choosing a particular subgraph of a mixture of two other random graphs. Contrary to the former two models, it lends itself for a rigorous mathematical analysis; and it is built specifically to have particular structural properties of a RGG. We establish for it a fluid limit describing the time-evolution of number of Rydberg atoms, and show numerically that the expression remains accurate across a wider range of particle densities than an earlier approach based on an RSA process on an Erdos-Renyi Random Graph (ERRG). Finally, we also come up with a new heuristic using random graphs that gives a recursion to describe a normalized pair-correlation function of a Rydberg gas. Our results suggest that even without dissipation, on long time scales the statistics are affected most by the geometrical restrictions induced by blockade effects, while on short time scales the statistics are affected most by quantum mechanical effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源