论文标题
相机网络中的分布式多目标跟踪
Distributed Multi-Target Tracking in Camera Networks
论文作者
论文摘要
多个摄像头的多目标跟踪的最新作品集中在集中系统上。相比之下,本文介绍了在分布式摄像机网络中实现的多目标跟踪方法。分布式系统的优点在于更轻松的沟通管理,更大的失败和本地决策。另一方面,与集中设置相比,数据关联和信息融合更具挑战性,这主要是由于缺乏全球和完整的信息。拟议的算法在重新识别网络和分布式跟踪器Manager模块的支持下,提高了分布式consensus Kalman过滤器的好处,以促进一致的信息。这些技术相互补充,并以简单有效的方式促进了跨摄像机数据关联。我们通过在不同条件下的已知公共数据集评估整个系统,证明了将所有模块组合的优势。此外,我们将算法与某些现有的集中式跟踪方法进行了比较,在准确性和带宽使用方面表现优于其行为。
Most recent works on multi-target tracking with multiple cameras focus on centralized systems. In contrast, this paper presents a multi-target tracking approach implemented in a distributed camera network. The advantages of distributed systems lie in lighter communication management, greater robustness to failures and local decision making. On the other hand, data association and information fusion are more challenging than in a centralized setup, mostly due to the lack of global and complete information. The proposed algorithm boosts the benefits of the Distributed-Consensus Kalman Filter with the support of a re-identification network and a distributed tracker manager module to facilitate consistent information. These techniques complement each other and facilitate the cross-camera data association in a simple and effective manner. We evaluate the whole system with known public data sets under different conditions demonstrating the advantages of combining all the modules. In addition, we compare our algorithm to some existing centralized tracking methods, outperforming their behavior in terms of accuracy and bandwidth usage.