论文标题

在未知干扰下基于设计的空间实验推断

Design-Based Inference for Spatial Experiments under Unknown Interference

论文作者

Wang, Ye, Samii, Cyrus, Chang, Haoge, Aronow, P. M.

论文摘要

我们考虑基于设计的因果推断,用于空间实验,其中治疗可能具有复杂的方式出血并反馈。这种空间溢出效应违反了标准因果推理方法的标准“无干扰”假设。空间溢出效应的复杂性也增加了基于模型的分析中错误指定和偏见的风险。我们在此类设置中提供了一种强大推断的方法,而无需指定参数结果模型。我们定义了一个空间``平均边缘化效应'(AME),该(AME)的特征是,在预期的观察单位中,该单位是指定距干预位置的特定距离,受到该位置的治疗的影响,平均与其他干预节点发出的效果相比。我们表明,即使干扰性质未知,随机化也足以使AME的非参数鉴定。在对干扰程度的轻度限制下,我们建立了估计量的渐近分布,并为样本理论和基于随机的推断提供了方法。我们显示了AME恢复结构效应的条件。我们通过模拟研究来说明我们的方法。然后,我们重新分析了一个随机的野外实验和森林保护的准实验,显示了我们的方法如何对与政策相关的溢出效应提供强有力的推断。

We consider design-based causal inference for spatial experiments in which treatments may have effects that bleed out and feed back in complex ways. Such spatial spillover effects violate the standard ``no interference'' assumption for standard causal inference methods. The complexity of spatial spillover effects also raises the risk of misspecification and bias in model-based analyses. We offer an approach for robust inference in such settings without having to specify a parametric outcome model. We define a spatial ``average marginalized effect'' (AME) that characterizes how, in expectation, units of observation that are a specified distance from an intervention location are affected by treatment at that location, averaging over effects emanating from other intervention nodes. We show that randomization is sufficient for non-parametric identification of the AME even if the nature of interference is unknown. Under mild restrictions on the extent of interference, we establish asymptotic distributions of estimators and provide methods for both sample-theoretic and randomization-based inference. We show conditions under which the AME recovers a structural effect. We illustrate our approach with a simulation study. Then we re-analyze a randomized field experiment and a quasi-experiment on forest conservation, showing how our approach offers robust inference on policy-relevant spillover effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源