论文标题

$ Q $ - 与Euler号码有关

$q$-Analogues of some supercongruences related to Euler numbers

论文作者

Guo, Victor J. W.

论文摘要

令$ e_n $为$ n $ -th欧拉号和$(a)_n = a(a+1)\ cdots(a+n-1)$ the Rising Factorial。令$ p> 3 $为素数。在2012年,Sun证明了$$ \ sum^{(p-1)/2} _ {k = 0}( - 1)^k(4k+1)\ frac {(\ frac {1} {2} {2} {2} {2} {2} {2} _ k^3} _ k^3} k! \ pmod {p^4},$$,这是对范·哈姆(Van Hamme)著名超级企业的改进。在2016年,Chen,XIE,他确定了以下结果:$$ \ sum_ {k = 0}^{p-1}( - 1)^k(3k+1)\ frac {(\ frac {1} {1} {2} {2} {2} {2} {2} {2})_ k^3} {k! p(-1)^{(P-1)/2}+p^3e_ {p-3} \ pmod {p^4},$$最初由Sun猜想。在本文中,我们通过采用$ Q $ -WZ方法给出了上述两个超级企业的$ Q $ -Analogues。作为结论,我们提供了以下太阳的以下超容器的$ q $ -ANALOGUE: e_ {p-3} \ pmod {p^3}。 $$

Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)\cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ \sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)\frac{(\frac{1}{2})_k^3}{k!^3} \equiv p(-1)^{(p-1)/2}+p^3E_{p-3} \pmod{p^4}, $$ which is a refinement of a famous supercongruence of Van Hamme. In 2016, Chen, Xie, and He established the following result: $$ \sum_{k=0}^{p-1}(-1)^k (3k+1)\frac{(\frac{1}{2})_k^3}{k!^3} 2^{3k} \equiv p(-1)^{(p-1)/2}+p^3E_{p-3} \pmod{p^4}, $$ which was originally conjectured by Sun. In this paper we give $q$-analogues of the above two supercongruences by employing the $q$-WZ method. As a conclusion, we provide a $q$-analogue of the following supercongruence of Sun: $$ \sum_{k=0}^{(p-1)/2}\frac{(\frac{1}{2})_k^2}{k!^2} \equiv (-1)^{(p-1)/2}+p^2 E_{p-3} \pmod{p^3}. $$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源