论文标题
混合动力,灰色框模型的可识别性和物理解释性 - 案例研究
Identifiability and physical interpretability of hybrid, gray-box models -- a case study
论文作者
论文摘要
模型可识别性涉及从可用过程数据估算的不确定模型参数的唯一性,并且通常被认为是模型物理解释性的先决条件。然而,由于随机和确定性的不确定性,例如低数据可变性,嘈杂的测量,错误的模型结构以及优化算法的随机性和局部性。对于灰色框,混合模型,由于参数数量很高,因此很少获得模型可识别性。我们通过一个工业案例研究来说明 - 对石油井中的生产障阀的建模 - 即使对于在估计问题中具有足够参数正则化的不可识别模型,也可以保留物理解释性。为此,在实际的工业场景中,由于模型灵活性更高,因此模型的预测性能可能对模型的预测性能有益。使用历史生产数据对资产EDVARD GRIEG进行六个石油井的建模显示,将杂种与机械模型进行比较的井中的中值预测误差减少了35 \%。另一方面,开发模型的预测性能和物理解释性都受到可用数据的影响。这些发现鼓励研究在线学习和其他混合模型变体,以改善结果。
Model identifiability concerns the uniqueness of uncertain model parameters to be estimated from available process data and is often thought of as a prerequisite for the physical interpretability of a model. Nevertheless, model identifiability may be challenging to obtain in practice due to both stochastic and deterministic uncertainties, e.g. low data variability, noisy measurements, erroneous model structure, and stochasticity and locality of the optimization algorithm. For gray-box, hybrid models, model identifiability is rarely obtainable due to a high number of parameters. We illustrate through an industrial case study - modeling of a production choke valve in a petroleum well - that physical interpretability may be preserved even for non-identifiable models with adequate parameter regularization in the estimation problem. To this end, in a real industrial scenario, it may be beneficial for the model's predictive performance to develop hybrid over mechanistic models, as the model flexibility is higher. Modeling of six petroleum wells on the asset Edvard Grieg using historical production data show a 35\% reduction in the median prediction error across the wells comparing a hybrid to a mechanistic model. On the other hand, both the predictive performance and physical interpretability of the developed models are influenced by the available data. The findings encourage research into online learning and other hybrid model variants to improve the results.