论文标题
XLBoost-Geo:基于极端地标的IP地理位置系统
XLBoost-Geo: An IP Geolocation System Based on Extreme Landmark Boosting
论文作者
论文摘要
IP地理位置旨在定位互联网设备的地理位置,该位置在许多互联网应用程序中起着至关重要的作用。在这一领域,长期以来的挑战是如何找到大量高度可靠的地标,这是提高IP地理位置精确度的关键。为此,已经做出了许多努力,而由于缺乏地标,许多IP地理位置方法仍然存在不可接受的错误距离。在本文中,我们提出了一个名为XLBoost-Geo的新型IP地理位置系统,该系统的重点是增强高度可靠地标的数量和密度。主要思想是从网页中提取指示位置的线索,并根据线索找到Web服务器。基于地标,XLBoost-Geo能够在误差距离的情况下对任意IP进行地理位置。具体而言,我们首先设计一种基于具有自适应损耗函数(LSTM-ADA)的双向LSTM神经网络的实体提取方法,以在网页上提取位置指示的线索,然后根据线索生成地标。然后,通过测量网络延迟和拓扑,我们估算了最接近的地标,并将地标的坐标与目标IP的位置相关联。我们的实验结果清楚地验证了提取方法的有效性和效率,地标的精确度,数量,覆盖范围以及IP地理位置的精度。在成熟的地图集节点上,XLBoost-Geo达到了2,5.61亿个中值误差距离,这表现优于SLG和IPIP。
IP geolocation aims at locating the geographical position of Internet devices, which plays an essential role in many Internet applications. In this field, a long-standing challenge is how to find a large number of highly-reliable landmarks, which is the key to improve the precision of IP geolocation. To this end, many efforts have been made, while many IP geolocation methods still suffer from unacceptable error distance because of the lack of landmarks. In this paper, we propose a novel IP geolocation system, named XLBoost-Geo, which focuses on enhancing the number and the density of highly reliable landmarks. The main idea is to extract location-indicating clues from web pages and locating the web servers based on the clues. Based on the landmarks, XLBoost-Geo is able to geolocate arbitrary IPs with little error distance. Specifically, we first design an entity extracting method based on a bidirectional LSTM neural network with a self-adaptive loss function (LSTM-Ada) to extract the location-indicating clues on web pages and then generate landmarks based on the clues. Then, by measurements on network latency and topology, we estimate the closest landmark and associate the coordinate of the landmark with the location of the target IP. The results of our experiments clearly validate the effectiveness and efficiency of the extracting method, the precision, number, coverage of the landmarks, and the precision of the IP geolocation. On RIPE Atlas nodes, XLBoost-Geo achieves 2,561m median error distance, which outperforms SLG and IPIP.