论文标题
重力冷凝物的热力学
Thermodynamics of Graviton Condensate
论文作者
论文摘要
在这项工作中,我们介绍了将黑洞视为重力的冷凝物的模型的热力学研究。在该模型中,由于拓扑缺陷,时空上的时空不是渐近平坦的,该缺陷像全局单极溶液一样引入了时空缺陷。我们已经获得了对鹰温度的校正,以及与质量$ m $的黑洞相关的负压。这样,被认为是由$μ__{CH} $ = 0的条件定义的关键点的重力凝管,具有定义明确的热力学数量$ p $,$ v $,$ t_ {h} $,$ s $,$ u $ $ $作为其他Bose-ineinstein Condense(Bec)。此外,我们还提出了Letelier时空与描述重力冷凝物的线元素之间的形式对等。我们还讨论了Kiselev黑洞,该黑洞可以参数最著名的球形对称黑洞。最后,我们提出了一个新的度量标准,我们将其称为BEC-Kiselev解决方案,它使我们能够将重力凝结物扩展到具有不同物质内容的解决方案的情况。
In this work, we present the thermodynamic study of a model that considers the black hole as a condensate of gravitons. In this model, the spacetime is not asymptotically flat because of a topological defect that introduces an angle deficit in the spacetime like in Global Monopole solutions. We have obtained a correction to the Hawking temperature plus a negative pressure associated with the black hole of mass $M$. In this way, the graviton condensate, which is assumed to be at the critical point defined by the condition $μ_{ch}$=0, has well-defined thermodynamic quantities $P$, $V$, $T_{h}$, $S$, and $U$ as any other Bose-Einstein condensate (BEC). In addition, we present a formal equivalence between the Letelier spacetime and the line element that describes the graviton condensate. We also discuss the Kiselev black hole, which can parametrize the most well-known spherically symmetric black holes. Finally, we present a new metric, which we will call the BEC-Kiselev solution, that allows us to extend the graviton condensate to the case of solutions with different matter contents.