论文标题

跟踪各种交织

Tracking the variety of interleavings

论文作者

Acharya, Ojaswi, Li, Stella, Meyer, David, Noory, Jasmine

论文摘要

在拓扑数据分析中,使用持久模块将有限数据集的合法拓扑特征与噪声区分开。持久模块之间的交织在分析中突出。可以表明,对于$ε$阳性,两个持久模块$ m $和$ n $之间的$ε$ - 互插图的收集具有仿射品种的结构,因此,与非空品种相对应的$ε$的最小值是相互交织的距离。考虑到这一点,很自然地想知道这种品种如何随$ε$的价值而变化,以及从它们的品种的知识中可以看出有关$ m $和$ n $的信息。 在本文中,我们专注于特殊情况,其中$ m $和$ n $是间隔模块。在这种情况下,我们对品种的所有可能进度进行了分类,并确定进度中存在有关$ m $和$ n $的信息。

In topological data analysis persistence modules are used to distinguish the legitimate topological features of a finite data set from noise. Interleavings between persistence modules feature prominantly in the analysis. One can show that for $ε$ positive, the collection of $ε$-interleavings between two persistence modules $M$ and $N$ has the structure of an affine variety, Thus, the smallest value of $ε$ corresponding to a nonempty variety is the interleaving distance. With this in mind, it is natural to wonder how this variety changes with the value of $ε$, and what information about $M$ and $N$ can be seen from just the knowledge of their varieties. In this paper, we focus on the special case where $M$ and $N$ are interval modules. In this situation we classify all possible progressions of varieties, and determine what information about $M$ and $N$ is present in the progression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源