论文标题

在Bieri-Neumann-Strebel-Renz上不变的薄弱通勤构建$ \ x(g)$

On the Bieri-Neumann-Strebel-Renz invariants of the weak commutativity construction $\X(G)$

论文作者

Kochloukova, Dessislava H.

论文摘要

对于有限生成的组$ g $,我们计算了Bieri-neumann-strebel-renz不变$σ^1(\ x(g))$,用于弱通勤构建$ \ x(g)$。用$ s(\ x(g)/ w(g))$识别$ s(\ x(g))$,我们显示$σ^2(\ x(g),\ z)\ subseteqσ^2(\ x(g)/ w(g)/ w(g),\ z),\ z),\ z)$ and and $σ^2(g)$σ^2(\ x(g))当$ w(g)$有限地生成时,是平等性,我们明确计算$σ^2(g)/ w(g),\ z)$和$σ^2(\ x(g)/ w(g)/ w(g))$。我们完全计算了组$ν(g)$的维度1和2的$σ$ invariants,并表明,如果$ g $有限地生成具有有限的换向器子组,那么非亚洲张量Square $ g \ otimes G $有限地呈现。

For a finitely generated group $G$ we calculate the Bieri-Neumann-Strebel-Renz invariant $Σ^1(\X(G))$ for the weak commutativity construction $\X(G)$. Identifying $S(\X(G))$ with $S(\X(G) / W(G))$ we show $Σ^2(\X(G),\Z) \subseteq Σ^2(\X(G)/ W(G),\Z)$ and $Σ^2(\X(G)) \subseteq $ $ Σ^2(\X(G)/ W(G))$ that are equalities when $W(G)$ is finitely generated and we explicitly calculate $Σ^2(\X(G)/ W(G),\Z)$ and $ Σ^2(\X(G)/ W(G))$ in terms of the $Σ$-invariants of $G$. We calculate completely the $Σ$-invariants in dimensions 1 and 2 of the group $ν(G)$ and show that if $G$ is finitely generated group with finitely presented commutator subgroup then the non-abelian tensor square $G \otimes G$ is finitely presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源