论文标题

深度降级进行科学发现:电子显微镜研究的案例研究

Deep Denoising For Scientific Discovery: A Case Study In Electron Microscopy

论文作者

Mohan, Sreyas, Manzorro, Ramon, Vincent, Joshua L., Tang, Binh, Sheth, Dev Yashpal, Simoncelli, Eero P., Matteson, David S., Crozier, Peter A., Fernandez-Granda, Carlos

论文摘要

Denoising是科学成像中的基本挑战。深度卷积神经网络(CNN)在降级自然图像方面提供了最新的最新状态,它们产生了令人印象深刻的结果。但是,在科学成像的背景下,几乎没有探索它们的潜力。通常对CNNS进行denoising CNN进行训练,以模拟的噪音人为损坏的真实自然图像进行训练。相比之下,在科学应用中,通常不可用无噪声的地面图像。为了解决此问题,我们提出了一个基于模拟的DeNoising(SBD)框架,其中CNN在模拟图像上进行了培训。我们测试了从传输电子显微镜(TEM)获得的数据,这是一种成像技术,在材料科学,生物学和医学中广泛应用。 SBD在模拟的基准数据集以及实际数据上以广泛的余量优于现有技术。除了具有变性的图像外,SBD还生成了可能性图,以可视化Denoced Image的结构与观察到的数据之间的一致性。我们的结果揭示了最先进的去索结构的缺点,例如它们的小型视野:大大增加了CNN的视野,使他们能够利用数据中的非本地周期性模式,这在高噪声水平上至关重要。此外,我们分析了SBD的概括能力,表明训练有素的网络对于成像参数和基础信号结构的变化是可靠的。最后,我们发布了第一个公开可用的TEM图像基准数据集,其中包含18,000个示例。

Denoising is a fundamental challenge in scientific imaging. Deep convolutional neural networks (CNNs) provide the current state of the art in denoising natural images, where they produce impressive results. However, their potential has barely been explored in the context of scientific imaging. Denoising CNNs are typically trained on real natural images artificially corrupted with simulated noise. In contrast, in scientific applications, noiseless ground-truth images are usually not available. To address this issue, we propose a simulation-based denoising (SBD) framework, in which CNNs are trained on simulated images. We test the framework on data obtained from transmission electron microscopy (TEM), an imaging technique with widespread applications in material science, biology, and medicine. SBD outperforms existing techniques by a wide margin on a simulated benchmark dataset, as well as on real data. Apart from the denoised images, SBD generates likelihood maps to visualize the agreement between the structure of the denoised image and the observed data. Our results reveal shortcomings of state-of-the-art denoising architectures, such as their small field-of-view: substantially increasing the field-of-view of the CNNs allows them to exploit non-local periodic patterns in the data, which is crucial at high noise levels. In addition, we analyze the generalization capability of SBD, demonstrating that the trained networks are robust to variations of imaging parameters and of the underlying signal structure. Finally, we release the first publicly available benchmark dataset of TEM images, containing 18,000 examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源