论文标题

通过小波分析得出时变的细胞运动参数

Deriving Time-varying Cellular Motility Parameters via Wavelet Analysis

论文作者

Liu, Yanping, Jiao, Yang, Li, Guoqiang, Wang, Gao, Yao, Jingru, Chen, Guo, Lou, Silong, Shuai, Jianwei, Liu, Liyu

论文摘要

细胞迁移是正常组织发育和癌症转移的必不可少的生理和病理过程,它受细胞内信号途径和细胞外微环境(ECM)的极大调节。但是,由于某些因素的影响,即ECM,包括通过迁移细胞通过微结构重塑而导致的局部刚度,因此缺乏足够的工具来分析随时间变化的细胞迁移特性。在这里,我们开发了一种基于随时间变化的持续随机步行模型来从细胞轨迹中得出时间依赖性运动参数的方法。特别是,我们采用小波降解和小波变换来研究细胞迁移速度并获得小波功率谱。随后通过Lorentzian功率谱来得出时间依赖性的运动参数。我们的分析表明,小波降解,小波变换和洛伦兹功率谱的组合提供了一种有力的工具,可以准确得出时间依赖时间的运动参数,这在某种程度上反映了时间变化的微环境特征。

Cell migration is an indispensable physiological and pathological process for normal tissue development and cancer metastasis, which is greatly regulated by intracellular signal pathways and extracellular microenvironment (ECM). However, there is a lack of adequate tools to analyze the time-varying cell migration characteristics because of the effects of some factors, i.e., the ECM including the time-dependent local stiffness due to microstructural remodeling by migrating cells. Here, we develop an approach to derive the time-dependent motility parameters from cellular trajectories, based on the time-varying persistent random walk model. In particular, we employ the wavelet denoising and wavelet transform to investigate cell migration velocities and obtain the wavelet power spectrum. The time-dependent motility parameters are subsequently derived via Lorentzian power spectrum. Our analysis shows that the combination of wavelet denoising, wavelet transform and Lorentzian power spectrum provides a powerful tool to derive accurately the time-dependent motility parameters, which reflects the time-varying microenvironment characteristics to some extent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源