论文标题

比例 - 偏移和旋转不变的衍射光学网络

Scale-, shift- and rotation-invariant diffractive optical networks

论文作者

Mengu, Deniz, Rivenson, Yair, Ozcan, Aydogan

论文摘要

光学计算中的最新研究工作已倾向于开发光学神经网络,旨在从机器学习应用中的光学/光子学的处理速度和并行性中受益。在这些努力中,衍射深神经网络(D2NNS)在一系列使用深度学习设计的可训练表面上实现了光 - 互动,以计算所需的统计推断任务,因为光波从输入平面传播到输出现场视野。尽管较早的研究表明,衍射光网络具有看不见的数据的概括能力,例如,达到了手写数字的> 98%的图像分类精度,这些先前的设计通常对输入对象的空间缩放,翻译和旋转敏感。在这里,我们为衍射网络展示了一种新的训练策略,该策略在训练阶段引入了输入对象翻译,旋转和/或缩放,作为均匀分布的随机变量,以在其盲目的推理性能中对这种对象转换建立弹性。该训练策略成功地将衍射光网络设计的演变引向了尺度,移位和旋转不变性的解决方案,这对于例如自动驾驶汽车的动态机器视觉应用尤其重要且有用。

Recent research efforts in optical computing have gravitated towards developing optical neural networks that aim to benefit from the processing speed and parallelism of optics/photonics in machine learning applications. Among these endeavors, Diffractive Deep Neural Networks (D2NNs) harness light-matter interaction over a series of trainable surfaces, designed using deep learning, to compute a desired statistical inference task as the light waves propagate from the input plane to the output field-of-view. Although, earlier studies have demonstrated the generalization capability of diffractive optical networks to unseen data, achieving e.g., >98% image classification accuracy for handwritten digits, these previous designs are in general sensitive to the spatial scaling, translation and rotation of the input objects. Here, we demonstrate a new training strategy for diffractive networks that introduces input object translation, rotation and/or scaling during the training phase as uniformly distributed random variables to build resilience in their blind inference performance against such object transformations. This training strategy successfully guides the evolution of the diffractive optical network design towards a solution that is scale-, shift- and rotation-invariant, which is especially important and useful for dynamic machine vision applications in e.g., autonomous cars, in-vivo imaging of biomedical specimen, among others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源