论文标题

反事实表示与平衡重量的学习

Counterfactual Representation Learning with Balancing Weights

论文作者

Assaad, Serge, Zeng, Shuxi, Tao, Chenyang, Datta, Shounak, Mehta, Nikhil, Henao, Ricardo, Li, Fan, Carin, Lawrence

论文摘要

观察数据的因果推断的关键是实现与每种治疗类型相关的预测特征的平衡。最近的文献探索了代表学习以实现这一目标。在这项工作中,我们讨论了这些策略的陷阱,例如实现平衡和预测能力之间的巨大权衡 - 并通过在因果学习中的平衡权重的整合而提出补救措施。具体而言,我们从理论上将平衡与倾向估计的质量联系起来,强调确定适当的目标人群的重要性,并详细介绍特征平衡和体重调整的互补作用。然后,使用这些概念,我们开发了一种算法,以灵活,可扩展和准确的因果效应估计。最后,我们展示了学习的加权表示如何有助于具有具有吸引力的统计特征的替代因果学习程序。我们对合成示例和标准基准进行了一系列广泛的实验,并报告了相对于最先进的基线的令人鼓舞的结果。

A key to causal inference with observational data is achieving balance in predictive features associated with each treatment type. Recent literature has explored representation learning to achieve this goal. In this work, we discuss the pitfalls of these strategies - such as a steep trade-off between achieving balance and predictive power - and present a remedy via the integration of balancing weights in causal learning. Specifically, we theoretically link balance to the quality of propensity estimation, emphasize the importance of identifying a proper target population, and elaborate on the complementary roles of feature balancing and weight adjustments. Using these concepts, we then develop an algorithm for flexible, scalable and accurate estimation of causal effects. Finally, we show how the learned weighted representations may serve to facilitate alternative causal learning procedures with appealing statistical features. We conduct an extensive set of experiments on both synthetic examples and standard benchmarks, and report encouraging results relative to state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源