论文标题

使用神经微分方程在气候模型参数化中捕获缺失的物理学

Capturing missing physics in climate model parameterizations using neural differential equations

论文作者

Ramadhan, Ali, Marshall, John, Souza, Andre, Lee, Xin Kai, Piterbarg, Ulyana, Hillier, Adeline, Wagner, Gregory LeClaire, Rackauckas, Christopher, Hill, Chris, Campin, Jean-Michel, Ferrari, Raffaele

论文摘要

我们探讨了如何对未分辨量表的高度分辨的流体动力模型进行培训神经微分方程(NDE),从而为气候模型中的数据驱动参数化提供了理想的框架。 NDE克服了流体动力应用中传统神经网络(NNS)的某些局限性,因为它们可以轻松地纳入保护法和边界条件,并且随着时间的推移整合时稳定。我们提倡一种采用“残差”方法的方法,其中使用NN通过表示未由基本参数化捕获的残余通量来改善现有参数化。这减少了所需的训练量,并提供了一种捕获升级和非局部通量的方法。作为一个说明性的例子,我们考虑了由浮力损失在表面触发的海洋边界层的游离对流的参数化。我们证明,通过训练NDE针对高度分辨的显式模型,可以改善该过程的简单参数化 - 对流调整 - 以捕获混杂层的底部的夹带通量,对流调整本身的通量无法代表。增强参数化优于现有的常用参数化(例如K-Profile参数化(KPP))。我们展示了NDE的性能非常独立于时间步长,并且通过朱莉娅科学机器学习软件堆栈使用可微分模拟的在线培训方法可以通过降低的顺序提高准确性。我们得出的结论是,NDE为气候科学的子网格规模流程的发展提供了令人兴奋的途径,开辟了无数的新机会。

We explore how neural differential equations (NDEs) may be trained on highly resolved fluid-dynamical models of unresolved scales providing an ideal framework for data-driven parameterizations in climate models. NDEs overcome some of the limitations of traditional neural networks (NNs) in fluid dynamical applications in that they can readily incorporate conservation laws and boundary conditions and are stable when integrated over time. We advocate a method that employs a 'residual' approach, in which the NN is used to improve upon an existing parameterization through the representation of residual fluxes which are not captured by the base parameterization. This reduces the amount of training required and providing a method for capturing up-gradient and nonlocal fluxes. As an illustrative example, we consider the parameterization of free convection of the oceanic boundary layer triggered by buoyancy loss at the surface. We demonstrate that a simple parameterization of the process - convective adjustment - can be improved upon by training a NDE against highly resolved explicit models, to capture entrainment fluxes at the base of the well-mixed layer, fluxes that convective adjustment itself cannot represent. The augmented parameterization outperforms existing commonly used parameterizations such as the K-Profile Parameterization (KPP). We showcase that the NDE performs well independent of the time-stepper and that an online training approach using differentiable simulation via the Julia scientific machine learning software stack improves accuracy by an order-of-magnitude. We conclude that NDEs provide an exciting route forward to the development of representations of sub-grid-scale processes for climate science, opening up myriad new opportunities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源