论文标题

BP-MVSNET:用于多视图stereo的信仰传播层

BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo

论文作者

Sormann, Christian, Knöbelreiter, Patrick, Kuhn, Andreas, Rossi, Mattia, Pock, Thomas, Fraundorfer, Friedrich

论文摘要

在这项工作中,我们提出了BP-MVSNet,这是一种基于卷积的神经网络(CNN)的多视图 - sTEREO(MVS)方法,该方法使用了可区分的条件随机场(CRF)层进行正则化。为此,我们建议扩展BP层,并添加成功在MVS设置中成功使用它所需的内容。因此,我们展示了如何根据预期的3D误差来计算归一化,然后可以将其用于将CRF中的标签跳跃标准化。这是使BP层不变到MVS设置中不同尺度所必需的。为了启用分数标签跳跃,我们提出了一个可区分的插值步骤,我们将其嵌入成对项的计算中。这些扩展使我们能够将BP层集成到多尺度的MVS网络中,在那里我们不断改进粗糙的初始估计,直到获得高质量的深度图。我们在消融研究中评估了提出的BP-MVSNET,并在DTU,坦克和神庙和ETH3D数据集上进行了广泛的实验。实验表明,我们可以显着胜过基线并实现最先进的结果。

In this work, we propose BP-MVSNet, a convolutional neural network (CNN)-based Multi-View-Stereo (MVS) method that uses a differentiable Conditional Random Field (CRF) layer for regularization. To this end, we propose to extend the BP layer and add what is necessary to successfully use it in the MVS setting. We therefore show how we can calculate a normalization based on the expected 3D error, which we can then use to normalize the label jumps in the CRF. This is required to make the BP layer invariant to different scales in the MVS setting. In order to also enable fractional label jumps, we propose a differentiable interpolation step, which we embed into the computation of the pairwise term. These extensions allow us to integrate the BP layer into a multi-scale MVS network, where we continuously improve a rough initial estimate until we get high quality depth maps as a result. We evaluate the proposed BP-MVSNet in an ablation study and conduct extensive experiments on the DTU, Tanks and Temples and ETH3D data sets. The experiments show that we can significantly outperform the baseline and achieve state-of-the-art results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源