论文标题

形状受限的3D细胞分割的球形谐波

Spherical Harmonics for Shape-Constrained 3D Cell Segmentation

论文作者

Eschweiler, Dennis, Rethwisch, Malte, Koppers, Simon, Stegmaier, Johannes

论文摘要

最近的显微镜成像技术可以精确地分析3D图像数据中的细胞形态。为了处理由当前数字化成像技术生成的大量图像数据,比以往任何时候都更需要自动化方法。然而,用于形态分析的分割方法通常容易产生不自然形状的预测,总之,这可能导致实验结果不准确。为了最大程度地减少手动相互作用,形状先验有助于将预测限制为自然变化集。在本文中,我们展示了如何将球形谐波用作固有的限制3D显微镜图像数据中细胞分割的神经网络预测的替代方法。分析了球形谐波表示的好处和局限性,并将最终结果与两个不同数据集的其他最新方法进行比较。

Recent microscopy imaging techniques allow to precisely analyze cell morphology in 3D image data. To process the vast amount of image data generated by current digitized imaging techniques, automated approaches are demanded more than ever. Segmentation approaches used for morphological analyses, however, are often prone to produce unnaturally shaped predictions, which in conclusion could lead to inaccurate experimental outcomes. In order to minimize further manual interaction, shape priors help to constrain the predictions to the set of natural variations. In this paper, we show how spherical harmonics can be used as an alternative way to inherently constrain the predictions of neural networks for the segmentation of cells in 3D microscopy image data. Benefits and limitations of the spherical harmonic representation are analyzed and final results are compared to other state-of-the-art approaches on two different data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源