论文标题
泰坦的n $ _2 $的逃生和演变,由$^{14} $ n/$^{15} $ n同位素比率约束
Escape and evolution of Titan's N$_2$ atmosphere constrained by $^{14}$N/$^{15}$N isotope ratios
论文作者
论文摘要
我们应用一维大气模型来研究氮对泰坦历史的热逃逸。太阳能EUV通量的重大热逃逸应该比今天高100倍,逃逸速率高达1.5倍,约1.5 \ times 10^{28} $ S $ s $ s $^{ - 1} $和$ \ $ \ $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4.5 \ 4.5 \ times 10^{29} $ s $ s $^{ - 1} $分别为$ $ $ 7. s $^{ - 1} $。根据太阳是缓慢,中等还是快速旋转器的起源,热逃逸是太阳系形成后前100至1000 MYR的主要逃生过程。如果泰坦的大气层起源于早期,它可能会损失$ \ \ \ \ \ \ $ \ 0.5-16美元之间的当前大气质量,具体取决于太阳的旋转演变。我们还研究了通过在其深层内部的NH $ _3 $ -Iess的分解来分解泰坦的氮的质量平衡参数空间。我们的研究表明,如果泰坦的气氛起源于一开始,那么直到今天太阳是一个慢速旋转器,它才能生存。在其他情况下,逃逸对于脱气的氮来说太强大了,无法生存直到今天,这意味着以后的氮或额外的氮来源。通过NH $ _3 $ -Iese部分地,泰坦的氮的内源性起源与其初始分馏$^{14} $ n/$ n/$^{15} $ n $ \ \ $ 166-172,或者如果光化学去除的时间比最后的$ 1,000 Myr相关。由于该比率略高于彗星氨的比率,因此泰坦的一些氮可能起源于难治性有机物。
We apply a 1D upper atmosphere model to study thermal escape of nitrogen over Titan's history. Significant thermal escape should have occurred very early for solar EUV fluxes 100 to 400 times higher than today with escape rates as high as $\approx 1.5\times 10^{28}$ s$^{-1}$ and $\approx 4.5\times 10^{29}$ s$^{-1}$, respectively, while today it is $\approx 7.5\times 10^{17}$ s$^{-1}$. Depending on whether the Sun originated as a slow, moderate or fast rotator, thermal escape was the dominant escape process for the first 100 to 1000 Myr after the formation of the solar system. If Titan's atmosphere originated that early, it could have lost between $\approx 0.5 - 16$ times its present atmospheric mass depending on the Sun's rotational evolution. We also investigated the mass-balance parameter space for an outgassing of Titan's nitrogen through decomposition of NH$_3$-ices in its deep interior. Our study indicates that, if Titan's atmosphere originated at the beginning, it could have only survived until today if the Sun was a slow rotator. In other cases, the escape would have been too strong for the degassed nitrogen to survive until present-day, implying later outgassing or an additional nitrogen source. An endogenic origin of Titan's nitrogen partially through NH$_3$-ices is consistent with its initial fractionation of $^{14}$N/$^{15}$N $\approx$ 166 - 172, or lower if photochemical removal was relevant for longer than the last $\approx$ 1,000 Myr. Since this ratio is slightly above the ratio of cometary ammonia, some of Titan's nitrogen might have originated from refractory organics.