论文标题
高光谱图像分类的双重空间信息的融合
Fusion of Dual Spatial Information for Hyperspectral Image Classification
论文作者
论文摘要
将空间信息纳入光谱分类器中以进行高分辨率高光谱图像,导致分类性能方面有了显着改善。光谱空间高光谱图像分类的任务由于较高的类谱变异性和频谱间频谱变异性较低,因此仍然具有挑战性。这一事实使空间信息的提取高度活跃。在这项工作中,提出了一个新型的高光谱图像分类框架,并提出了双重空间信息的融合,其中双重空间信息是通过利用预处理特征提取和后处理的空间优化来构建的。在特征提取阶段,提出了一种自适应纹理平滑方法来构建结构曲线(SP),这使得可以从高光谱图像中精确提取区分特征。 SP提取方法在这里首次在遥感社区中使用。然后,提取的SP被馈入光谱分类器。在空间优化阶段,使用像素级分类器来获得类概率,然后使用扩展的基于随机助行器的空间优化技术。最后,使用决策融合规则融合了两个不同阶段获得的类概率。在不同场景的三个数据集上执行的实验表明,该方法可以胜过其他最先进的分类技术。此外,提出的特征提取方法,即SP可以有效地改善不同土地覆盖率之间的歧视。
The inclusion of spatial information into spectral classifiers for fine-resolution hyperspectral imagery has led to significant improvements in terms of classification performance. The task of spectral-spatial hyperspectral image classification has remained challenging because of high intraclass spectrum variability and low interclass spectral variability. This fact has made the extraction of spatial information highly active. In this work, a novel hyperspectral image classification framework using the fusion of dual spatial information is proposed, in which the dual spatial information is built by both exploiting pre-processing feature extraction and post-processing spatial optimization. In the feature extraction stage, an adaptive texture smoothing method is proposed to construct the structural profile (SP), which makes it possible to precisely extract discriminative features from hyperspectral images. The SP extraction method is used here for the first time in the remote sensing community. Then, the extracted SP is fed into a spectral classifier. In the spatial optimization stage, a pixel-level classifier is used to obtain the class probability followed by an extended random walker-based spatial optimization technique. Finally, a decision fusion rule is utilized to fuse the class probabilities obtained by the two different stages. Experiments performed on three data sets from different scenes illustrate that the proposed method can outperform other state-of-the-art classification techniques. In addition, the proposed feature extraction method, i.e., SP, can effectively improve the discrimination between different land covers.