论文标题
NGAT4REC:邻居感知的图形注意网络推荐
NGAT4Rec: Neighbor-Aware Graph Attention Network For Recommendation
论文作者
论文摘要
学习用户和项目的学习信息表示(又称嵌入)是现代推荐系统的核心。以前的工作利用了用户 - 项目交互图中单跳邻居的用户项目关系,以提高表示质量。最近,图形神经网络(GNN)的建议研究考虑了多跳邻居的隐性协作信息,以丰富表示形式。但是,GNN的大多数用于推荐系统的作品都不考虑关系信息,这意味着明确的邻居中不同邻居的表达差异。每个相邻项目对用户喜好表示的影响可以用用户的项目和相邻项目之间的相关性表示。对称地,对于给定的项目,一个相邻的用户和相邻用户之间的相关性可以反映有关该项目特征的信号强度。为了建模邻居在图形嵌入聚合中的隐式相关性,我们提出了一个邻居感知的图形注意力网络,用于推荐任务,称为NGAT4REC。它采用了一种新颖的邻居感知图注意层,该图层通过计算这些邻居之间的注意力成对,将不同的邻居感注意力系数分配给给定节点的不同邻居。然后,NGAT4REC根据相应的邻居意识到的注意系数将邻居的嵌入式汇总,以生成每个节点嵌入的下一层。此外,我们结合了更多的邻居感知图注意层,以收集来自多跳邻居的影响信号。我们删除了特征转换和非线性激活,这在协作过滤中被证明是无用的。在三个基准数据集上进行的广泛实验表明,我们的模型始终优于各种最新模型。
Learning informative representations (aka. embeddings) of users and items is the core of modern recommender systems. Previous works exploit user-item relationships of one-hop neighbors in the user-item interaction graph to improve the quality of representation. Recently, the research of Graph Neural Network (GNN) for recommendation considers the implicit collaborative information of multi-hop neighbors to enrich the representation. However, most works of GNN for recommendation systems do not consider the relational information which implies the expression differences of different neighbors in the neighborhood explicitly. The influence of each neighboring item to the representation of the user's preference can be represented by the correlation between the item and neighboring items of the user. Symmetrically, for a given item, the correlation between one neighboring user and neighboring users can reflect the strength of signal about the item's characteristic. To modeling the implicit correlations of neighbors in graph embedding aggregating, we propose a Neighbor-Aware Graph Attention Network for recommendation task, termed NGAT4Rec. It employs a novel neighbor-aware graph attention layer that assigns different neighbor-aware attention coefficients to different neighbors of a given node by computing the attention among these neighbors pairwisely. Then NGAT4Rec aggregates the embeddings of neighbors according to the corresponding neighbor-aware attention coefficients to generate next layer embedding for every node. Furthermore, we combine more neighbor-aware graph attention layer to gather the influential signals from multi-hop neighbors. We remove feature transformation and nonlinear activation that proved to be useless on collaborative filtering. Extensive experiments on three benchmark datasets show that our model outperforms various state-of-the-art models consistently.