论文标题

向公平知识转移,以进行不平衡的域适应

Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation

论文作者

Jing, Taotao, Xu, Bingrong, Li, Jingjing, Ding, Zhengming

论文摘要

域的适应性(DA)成为通过利用外部源知识来解决不足或没有注释问题的新兴技术。现有的DA算法主要集中于通过域对齐的实践知识转移。不幸的是,当辅助来源在不同类别中极大不平衡时,他们忽略了公平问题,这导致严重的少数族裔资源的知识适应不足。为此,我们提出了一个朝向公平知识转移(TFKT)框架,以应对不平衡的跨域学习中的公平挑战。具体而言,利用新型的跨域混合产生来增强具有目标信息的少数族裔来源,以增强公平性。此外,开发了双重不同的分类器和跨域原型比对,以寻求更强大的分类器边界并减轻域移位。这样的三种策略被制定为一个统一的框架,以解决公平问题和领域转变挑战。通过与现有的最新DA模型进行比较,通过两个流行的基准进行了大量实验,已经验证了我们提出的模型的有效性,尤其是我们的模型在两个基准方面显着提高了20%以上的总体准确性。

Domain adaptation (DA) becomes an up-and-coming technique to address the insufficient or no annotation issue by exploiting external source knowledge. Existing DA algorithms mainly focus on practical knowledge transfer through domain alignment. Unfortunately, they ignore the fairness issue when the auxiliary source is extremely imbalanced across different categories, which results in severe under-presented knowledge adaptation of minority source set. To this end, we propose a Towards Fair Knowledge Transfer (TFKT) framework to handle the fairness challenge in imbalanced cross-domain learning. Specifically, a novel cross-domain mixup generation is exploited to augment the minority source set with target information to enhance fairness. Moreover, dual distinct classifiers and cross-domain prototype alignment are developed to seek a more robust classifier boundary and mitigate the domain shift. Such three strategies are formulated into a unified framework to address the fairness issue and domain shift challenge. Extensive experiments over two popular benchmarks have verified the effectiveness of our proposed model by comparing to existing state-of-the-art DA models, and especially our model significantly improves over 20% on two benchmarks in terms of the overall accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源