论文标题
3D打印的光(用于谐振的Terahertz-Field驱动的超快电子发射)
3D-Printed Photocathodes for Resonant, Terahertz-Field-Driven Ultrafast Electron Emission
论文作者
论文摘要
超短光光束电子束可以在子秒时间内提供高电子电流,从而实现对纳米级分辨率的超快物理过程的时间分辨研究。通常使用非共振导电纳米尺实现具有较高亮度的纳米级光电源。但是,这样的发射器需要复杂的不可估计的制造程序,其可重复性差。由于具有出色的田间增强特性,最近研究了通过光刻造影制造的平面共振天线。然而,这些结构的电子发射与基板平面平行,这限制了它们作为电子源的实际用途。在这项工作中,我们介绍了一种创新的平面外,共振纳米annna设计,用于通过高分辨率3D打印启用现场驱动光发射。数值和实验证据表明,黄金涂层的Terahertz共振纳米酮在其顶端提供了大型局部电场,从而自动确保了平面外相干电子的发射和加速度。我们表明,可以方便地以阵列形式排列谐振结构,以通过集体的Terahertz响应进行进一步的显着电子提取。值得注意的是,这种集体行为也可以收获,以从单个纳米源中提高光发射。我们的方法为新一代可以在随意制造和设计的新一代光电座开辟了道路,从而大大放松了对强烈的Terahertz驱动程序的需求。
Ultrashort photoemitted electron bunches can provide high electron currents within sub-picosecond timeframes, enabling time-resolved investigations of ultrafast physical processes with nanoscale resolution. Non-resonant conductive nanotips are typically employed to realize nanoscale photoelectron sources with high brightness. However, such emitters require complex non-scalable fabrication procedures featuring poor reproducibility. Planar resonant antennas fabricated via photolithography have been recently investigated, also because of their superior field enhancement properties. Nevertheless, the electron emission from these structures is parallel to the substrate plane, which limits their practical use as electron sources. In this work, we present an innovative out-of-plane, resonant nanoantenna design for field-driven photoemission enabled by high-resolution 3D printing. Numerical and experimental evidences demonstrate that gold-coated, terahertz resonant nanocones provide large local electric fields at their apex, automatically ensuring out-of-plane coherent electron emission and acceleration. We show that the resonant structures can be conveniently arranged in an array form, for a further significant electron extraction enhancement via a collective terahertz response. Remarkably, such collective behaviour can also be harvested to boost photoemission from an individual nano-source. Our approach opens the path for a new generation of photocathodes that can be reproducibly fabricated and designed at will, significantly relaxing the requirement for intense terahertz drivers.