论文标题
填充强化的量子带绝缘子的拓扑不变
Topological Invariants of a Filling-Enforced Quantum Band Insulator
论文作者
论文摘要
传统的离子/共价复合绝缘子是由电子计数与系统体积之间的相称产生的。另一方面,传统的拓扑绝缘子,在量子厅效应系统之外,通常不会显示出如此相称的情况。 tnstead,他们可以将相过渡到保持电子填充的微不足道绝缘子。然而,在某些晶体绝缘子中,称为填充量子带绝缘子(FEQBIS),电子填充可以决定绝缘基态的非平凡拓扑。目前,FEQBIS与常规拓扑不变的人之间的关系知之甚少。在这项工作中,我们研究了这样一个特别有趣的示例,即半填充Feqbi,该示例在没有旋转电子的空间群中实现。我们证明,带有填充2的空间群中的任何4波段Feqbi都必须具有非平凡的拓扑不变式,即$ \ Mathbb {Z} _2 $ Glide不变性,因此必须具有量化的磁性极性性$θ=π$。因此,我们发现了一个三维示例,其中电子填充和带拓扑被绑定。这样的锁定提出了关于描述琐碎阶段和拓扑阶段之间过渡的带范式通用性的有趣问题。
Traditional ionic/covalent compound insulators arise from a commensuration between electron count and system volume. On the other hand, conventional topological insulators, outside of quantum hall effect systems, do not typically display such a commensuration. Tnstead, they can undergo a phase transition to a trivial insulator that preserves the electron filling. Nevertheless, in some crystalline insulators, termed filling-enforced quantum band insulators (feQBIs), electron filling can dictate nontrivial topology in the insulating ground state. Currently, little is known about the relation between feQBIs and conventional topological invariants. In this work, we study such relations for a particularly interesting example of a half-filling feQBI that is realized in space group 106 with spinless electrons. We prove that any 4-band feQBI in space group 106 with filling 2 must have a nontrivial topological invariant, namely the $\mathbb{Z}_2$ glide invariant, and thus must have a quantized magnetoelectric polarizability $θ=π$. We thus have found a three-dimensional example where electron filling and band topology are tied. Such a locking raises intriguing questions about the generality of the band-inversion paradigm in describing the transition between trivial and topological phases.