论文标题
在度量空间中具有较大交点特性的集合
Sets with large intersection properties in metric spaces
论文作者
论文摘要
在这项工作中,我们重现了欧几里得环境中$ \ gg^s $ set的表征[J.伦敦数学。 Soc。 49:267-280,1994]到更通用的度量空间。这些集合具有至少$ s $的Hausdorff尺寸,并被可数的交叉点关闭,这对于估计所谓的$α$ approxable-able-able-approable点的尺寸特别有用(通常出现在Diophantine近似值中)。
In this work we reproduce the characterization of $\Gg^s$-sets from the euclidean setting [J. London Math. Soc. 49:267-280,1994] to more general metric spaces. These sets have Hausdorff dimension at least $s$ and are closed by countable intersections, which is particularly useful to estimate the dimension of the so called sets of $α$-approximable points (that typically appear in Diophantine approximations).