论文标题

锥体结构的应用到各向异性的流动性Huygens的原理

Applications of cone structures to the anisotropic rheonomic Huygens' principle

论文作者

Javaloyes, Miguel Á., Pendás-Recondo, Enrique, Sánchez, Miguel

论文摘要

引入了用于描述经典波传播的一般框架。这取决于锥体结构$ c $由固有空间$σ$确定的传播速度(点,方向和时间依赖)和观察者的矢量field $ \ partial_t $,其积分曲线既可以为波浪提供zermelo corme of the Wave and auxiliary lorentz-finsler $ g $ g $ g $ g $ c $ c $ $ c $。波前的PDE将$ c $ $ t $胶片化的锥形锥形锥形锥体减少为$ c $。特定案例包括时间独立性($ \ partial_t $以$ g $的杀戮),无限的椭圆形繁殖($ g $可以用lorentz公制代替)或介质的情况,该介质相对于$ \\ partial_t $移动的速度比$ \ partial_t $更快的速度(比声波强的强烈风波),以相关时间依赖于conik fins fins fins intic ippertricter intic ippertricter。重新审视了野火传播的具体情况。

A general framework for the description of classic wave propagation is introduced. This relies on a cone structure $C$ determined by an intrinsic space $Σ$ of velocities of propagation (point, direction and time-dependent) and an observers' vector field $\partial_t$ whose integral curves provide both a Zermelo problem for the wave and an auxiliary Lorentz-Finsler metric $G$ compatible with $C$. The PDE for the wavefront is reduced to the ODE for the $t$-parametrized cone geodesics of $C$. Particular cases include time-independence ($\partial_t$ is Killing for $G$), infinitesimally ellipsoidal propagation ($G$ can be replaced by a Lorentz metric) or the case of a medium which moves with respect to $\partial_t$ faster than the wave (the strong wind case of a sound wave), where a conic time-dependent Finsler metric emerges. The specific case of wildfire propagation is revisited.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源