论文标题

半监督的机器学习搜索从未见过的重力波源

A semi-supervised Machine Learning search for never-seen Gravitational-Wave sources

论文作者

Marianer, Tom, Poznanski, Dovi, Prochaska, J. Xavier

论文摘要

到目前为止,Ligo和处女座探测器已经检测到了数十个重力波(GW)事件。这些GW都通过紧凑的二元合并发出,我们具有出色的预测模型。但是,可能还有其他来源我们没有可靠的模型。预计有些存在,但非常罕见(例如,超新星),而另一些可能是完全意外的。到目前为止,还没有发现未发现的来源,但是缺乏模型使人们对这种来源的搜索更加困难和敏感。我们在这里提出了使用半监督机器学习的未建模GW信号的搜索。我们将深度学习和离群检测算法应用于GW菌株数据的标记频谱图,然后在公共Ligo数据中搜索具有异常模式的频谱图。我们从前两个观察运行中搜索了$ \ sim 13 \%$ concinter数据的数据。在分析的数据中未检测到GW信号的候选。我们使用模拟信号评估了搜索的灵敏度,我们表明该搜索可以检测包含异常或意外的GW模式的频谱图,并报告了达到50美元\%$检测率的波形和振幅。

By now, tens of gravitational-wave (GW) events have been detected by the LIGO and Virgo detectors. These GWs have all been emitted by compact binary coalescence, for which we have excellent predictive models. However, there might be other sources for which we do not have reliable models. Some are expected to exist but to be very rare (e.g., supernovae), while others may be totally unanticipated. So far, no unmodeled sources have been discovered, but the lack of models makes the search for such sources much more difficult and less sensitive. We present here a search for unmodeled GW signals using semi-supervised machine learning. We apply deep learning and outlier detection algorithms to labeled spectrograms of GW strain data, and then search for spectrograms with anomalous patterns in public LIGO data. We searched $\sim 13\%$ of the coincident data from the first two observing runs. No candidates of GW signals were detected in the data analyzed. We evaluate the sensitivity of the search using simulated signals, we show that this search can detect spectrograms containing unusual or unexpected GW patterns, and we report the waveforms and amplitudes for which a $50\%$ detection rate is achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源