论文标题
$η$ -DAFIDE的双重描述
Dual description of $η$-deformed OSP sigma models
论文作者
论文摘要
我们研究了$η$ formed $ osp(n | 2m)$ Sigma模型的双重描述($ n> 200万+2 $)。与经典的谎言组相比,对于超级组,有不等的$η$变形,与简单根的不同选择相对应。对于一类此类变形,我们根据连续参数$ b $提出筛选费用系统,该系统在限制$ b \ rightArrow \ rightarrow \ rightarrow \ infty \ infty $ usp \ rightarrow \ infty $中定义了$η$ b $ osp(n | 200万)$ sigma型号,而某些toda qft却为$ b \ rightarrow0 $。在Sigma模型制度中,我们表明,$η$形式的模型的领先紫外线渐近渐近渐近与扰动的高斯理论相吻合。在扰动制度$ b \ rightarrow0 $中,我们表明树级的两粒子散射矩阵与三角$ osp(n | 2m)$ $ $ s $ matrix的扩展相匹配。
We study the dual description of the $η$-deformed $OSP(N|2m)$ sigma model in the asymptotically free regime ($N>2m+2$). Compared to the case of classical Lie groups, for supergroups there are inequivalent $η$-deformations corresponding to different choices of simple roots. For a class of such deformations we propose the system of screening charges depending on a continuous parameter $b$, which defines the $η$-deformed $OSP(N|2m)$ sigma model in the limit $b\rightarrow\infty$ and a certain Toda QFT as $b\rightarrow0$. In the sigma model regime we show that the leading UV asymptotic of the $η$-deformed model coincides with a perturbed Gaussian theory. In the perturbative regime $b\rightarrow0$ we show that the tree-level two-particle scattering matrix matches the expansion of the trigonometric $OSP(N|2m)$ $S$-matrix.