论文标题

双体,高度偏心和非同步旋转系统中的潮汐耗散:pluto-charon和外部trappist-1E的应用

Tidal Dissipation in Dual-Body, Highly Eccentric, and Non-synchronously Rotating Systems: Applications to Pluto-Charon and the Exoplanet TRAPPIST-1e

论文作者

Renaud, Joe P., Henning, Wade G., Saxena, Prabal, Neveu, Marc, Bagheri, Amirhossein, Mandell, Avi, Hurford, Terry

论文摘要

使用Andrade衍生的Sundberg-Cooper流变学,我们在简化的均质体假设下,对Trappist-1E的世俗潮汐演化和Pluto-Charon的早期历史进行了一些改进。通过包括高阶偏心术语(直至和包括$ e^{20} $),我们发现了从传统上使用的$ e^{2} $截断的分歧,从$ e = 0.1 $开始。限量差异开始以$> 0.6 $发生。至关重要的是,高阶偏心术语激活了其他自旋轨道共振。经历非同步旋转的世界可能会落入这些共鸣,从而改变其长期演变。非零倾斜通常不会产生更高的加热;但是,它可以大大改变轨道和旋转进化。就像怪异的一样,倾斜可以激活新的潮汐模式和共振。跟踪冥王星和夏隆内的双体耗散会导致更快的进化和巨大的轨道结局。根据我们的发现,我们建议对以$ e \ geq0.3 $的世界进行潮汐研究,以考虑到$ e^{2} $以外的其他怪异条款。如果正在考虑非同步旋转或非同步倾斜,则该阈值应降低至$ e> 0.1 $。由于偏心函数的收敛性不佳,因此对可能经历很高偏心率的世界的研究($ e \ geq0.6 $)应包括具有高偏心力的术语。我们为任意倾斜和非同步旋转提供最多$ e^{10} $的这些方程。最后,应重新考虑以$ e \ gtrsim0.1 $的短期,实体外部外球星的假设。即使在这些相对适度的偏心率中,高阶自旋轨道共振也可以存在,而先前的研究发现这种共振可以显着改变恒星驱动的气候。

Using the Andrade-derived Sundberg-Cooper rheology, we apply several improvements to the secular tidal evolution of TRAPPIST-1e and the early history of Pluto-Charon under the simplifying assumption of homogeneous bodies. By including higher-order eccentricity terms (up to and including $e^{20}$), we find divergences from the traditionally used $e^{2}$ truncation starting around $e=0.1$. Order-of-magnitude differences begin to occur for $e>0.6$. Critically, higher-order eccentricity terms activate additional spin-orbit resonances. Worlds experiencing non-synchronous rotation can fall into and out of these resonances, altering their long-term evolution. Non-zero obliquity generally does not generate significantly higher heating; however, it can considerably alter orbital and rotational evolution. Much like eccentricity, obliquity can activate new tidal modes and resonances. Tracking the dual-body dissipation within Pluto and Charon leads to faster evolution and dramatically different orbital outcomes. Based on our findings, we recommend future tidal studies on worlds with $e\geq0.3$ to take into account additional eccentricity terms beyond $e^{2}$. This threshold should be lowered to $e>0.1$ if non-synchronous rotation or non-zero obliquity is under consideration. Due to the poor convergence of the eccentricity functions, studies on worlds that may experience very high eccentricity ($e\geq0.6$) should include terms with high powers of eccentricity. We provide these equations up to $e^{10}$ for arbitrary obliquity and non-synchronous rotation. Finally, the assumption that short-period, solid-body exoplanets with $e\gtrsim0.1$ are tidally locked in their 1:1 spin-orbit resonance should be reconsidered. Higher-order spin-orbit resonances can exist even at these relatively modest eccentricities, while previous studies have found such resonances can significantly alter stellar-driven climate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源