论文标题

对基于文本的游戏的堆叠层次关注深度强化学习

Deep Reinforcement Learning with Stacked Hierarchical Attention for Text-based Games

论文作者

Xu, Yunqiu, Fang, Meng, Chen, Ling, Du, Yali, Zhou, Joey Tianyi, Zhang, Chengqi

论文摘要

我们研究基于文本的游戏的强化学习(RL),这些游戏是自然语言背景下的交互式模拟。尽管已经开发出代表环境信息和语言动作的不同方法,但现有的RL代理没有任何推理能力来处理文本游戏。在这项工作中,我们旨在用知识图进行明确的推理以进行决策,以便由可解释的推理程序生成和支持代理的行为。我们提出了一种堆叠的分层注意机制,以利用知识图的结构来构建推理过程的明确表示。我们在许多人造的基准游戏上广泛评估了我们的方法,实验结果表明,我们的方法的性能优于现有基于文本的代理。

We study reinforcement learning (RL) for text-based games, which are interactive simulations in the context of natural language. While different methods have been developed to represent the environment information and language actions, existing RL agents are not empowered with any reasoning capabilities to deal with textual games. In this work, we aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure. We propose a stacked hierarchical attention mechanism to construct an explicit representation of the reasoning process by exploiting the structure of the knowledge graph. We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源