论文标题
忠实的欧几里得距离领域来自log-gaussian过程隐式表面
Faithful Euclidean Distance Field from Log-Gaussian Process Implicit Surfaces
论文作者
论文摘要
在这封信中,我们介绍了log-gaussian过程隐式表面(log-gpis),这是一种适合表面重建和局部导航的新型连续和概率的映射表示。我们的关键贡献是意识到可以通过将对数转换应用于GPIS公式来恢复准确的欧几里得距离场(EDF),并同时将对数转换施加到GPIS公式中,并同时将对数转换施加到GPIS公式中,从而简单地求解。为了得出所提出的表示形式,通过线性PDE的对数近似EDF的非线性eikonal偏微分方程(PDE),可以利用Varadhan的公式。我们表明,Matern协方差家族的成员直接满足了这一线性PDE。提出的方法不需要后处理步骤来恢复EDF。此外,与基于抽样的方法不同,Log-GPI不使用表面内部和外部的样品点作为协方差的导数,可以直接估算表面正常梯度和距离梯度。我们针对最先进的映射框架对模拟和真实数据进行了基准测试,该方法也旨在同时恢复表面和距离场。我们的实验表明,LOG-GPI为EDF产生最准确的结果,并且表面重建的可比结果及其计算时间仍然可以在线操作。
In this letter, we introduce the Log-Gaussian Process Implicit Surface (Log-GPIS), a novel continuous and probabilistic mapping representation suitable for surface reconstruction and local navigation. Our key contribution is the realisation that the regularised Eikonal equation can be simply solved by applying the logarithmic transformation to a GPIS formulation to recover the accurate Euclidean distance field (EDF) and, at the same time, the implicit surface. To derive the proposed representation, Varadhan's formula is exploited to approximate the non-linear Eikonal partial differential equation (PDE) of the EDF by the logarithm of a linear PDE. We show that members of the Matern covariance family directly satisfy this linear PDE. The proposed approach does not require post-processing steps to recover the EDF. Moreover, unlike sampling-based methods, Log-GPIS does not use sample points inside and outside the surface as the derivative of the covariance allow direct estimation of the surface normals and distance gradients. We benchmarked the proposed method on simulated and real data against state-of-the-art mapping frameworks that also aim at recovering both the surface and a distance field. Our experiments show that Log-GPIS produces the most accurate results for the EDF and comparable results for surface reconstruction and its computation time still allows online operations.