论文标题

在几乎多种生产歧管的混合标量曲率上

On the mixed scalar curvature of almost multi-product manifolds

论文作者

Rovenski, Vladimir

论文摘要

一个伪里曼尼亚人的歧管,并具有$ k> 2 $正交的补充分布(称为Riemannian几乎几乎多生产结构)出现在诸如多翘曲产品的主题中,该网站由多个叶子,dupin Hypersurfaces和stu \ - 曲面和曲面和EinSteineetemations of Dupin Hypersurfaces和Stu \ dies组成。在本文中,我们将以下两个问题考虑到带有线性连接的Riemannian几乎多生产的歧管的混合标态曲率:a)积分公式和对歧管分裂的整体公式和应用,b)b)对混合的爱因斯坦 - 希尔伯特作用的变化公式以及对混合质量量表的均等型福利曲线量的某些结果的变化。

A pseudo-Riemannian manifold endowed with $k>2$ orthogonal complementary distributions (called a Riemannian almost multi-product structure) appears in such topics as multiply warped products, the webs composed of several foliations, Dupin hypersurfaces and in stu\-dies of the curvature and Einstein equations. In this article, we consider the following two problems on the mixed scalar curvature of a Riemannian almost multi-product manifold with a linear connection: a) integral formulas and applications to splitting of manifolds, b) variation formulas and applications to the mixed Einstein-Hilbert action, and we generalize certain results on the mixed scalar curvature of pseudo-Riemannian almost product manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源