论文标题
从面部表情中检测到野性嗜睡
In-the-wild Drowsiness Detection from Facial Expressions
论文作者
论文摘要
在嗜睡状态下开车是道路事故的主要原因,导致生命和财产造成巨大损害。开发可以推断驾驶员的嗜睡状态的健壮,自动,实时系统具有挽救生命的影响。但是,在现实情况下开发嗜睡检测系统在现实情况下运作良好是一项挑战,因为与收集大量逼真的昏昏欲睡数据以及对不断发展的昏昏欲睡状态的复杂时间动态建模相关的困难。在本文中,我们提出了一项数据收集协议,该协议涉及为隔夜班级工人配备摄像机套件,以在驾驶时记录他们的脸。我们制定了嗜睡注释指南,以使人类能够将收集的视频标记为4个嗜睡:``警报'',``警报'',``有点昏昏欲睡'',``中度昏昏欲睡''和``极度昏昏欲睡''。我们尝试不同的卷积和时间神经网络体系结构,以预测驾驶员脸输入视频的姿势,表达和基于情感的表现。我们最佳性能模型的宏ROC-AUC为0.78,而基线模型为0.72。
Driving in a state of drowsiness is a major cause of road accidents, resulting in tremendous damage to life and property. Developing robust, automatic, real-time systems that can infer drowsiness states of drivers has the potential of making life-saving impact. However, developing drowsiness detection systems that work well in real-world scenarios is challenging because of the difficulties associated with collecting high-volume realistic drowsy data and modeling the complex temporal dynamics of evolving drowsy states. In this paper, we propose a data collection protocol that involves outfitting vehicles of overnight shift workers with camera kits that record their faces while driving. We develop a drowsiness annotation guideline to enable humans to label the collected videos into 4 levels of drowsiness: `alert', `slightly drowsy', `moderately drowsy' and `extremely drowsy'. We experiment with different convolutional and temporal neural network architectures to predict drowsiness states from pose, expression and emotion-based representation of the input video of the driver's face. Our best performing model achieves a macro ROC-AUC of 0.78, compared to 0.72 for a baseline model.