论文标题

通过指针网络的在线对话分开

Online Conversation Disentanglement with Pointer Networks

论文作者

Yu, Tao, Joty, Shafiq

论文摘要

每天在线进行大量文本对话,并同时进行多次对话。交织的对话不仅会遵循正在进行的讨论,而且还会从同时信息中提取相关信息。对话分解旨在将相互融合的消息分离为独立的对话。但是,现有的分解方法主要依赖于特定于数据集的手工制作的功能,从而阻碍了概括和适应性。在这项工作中,我们提出了一个端到端的在线框架,以避免耗时特定的域特征工程。我们设计了一种新颖的方式来嵌入包含时间戳,扬声器和消息文本的整个话语,并提出了一种自定义注意机制,该机制将脱离的问题建模为指向问题,同时以端到端的方式有效地捕获了牙间相互作用。我们还引入了一个联合学习目标,以更好地捕获上下文信息。我们在Ubuntu IRC数据集上进行的实验表明,我们的方法在链接和对话预测任务中都达到了最先进的性能。

Huge amounts of textual conversations occur online every day, where multiple conversations take place concurrently. Interleaved conversations lead to difficulties in not only following the ongoing discussions but also extracting relevant information from simultaneous messages. Conversation disentanglement aims to separate intermingled messages into detached conversations. However, existing disentanglement methods rely mostly on handcrafted features that are dataset specific, which hinders generalization and adaptability. In this work, we propose an end-to-end online framework for conversation disentanglement that avoids time-consuming domain-specific feature engineering. We design a novel way to embed the whole utterance that comprises timestamp, speaker, and message text, and proposes a custom attention mechanism that models disentanglement as a pointing problem while effectively capturing inter-utterance interactions in an end-to-end fashion. We also introduce a joint-learning objective to better capture contextual information. Our experiments on the Ubuntu IRC dataset show that our method achieves state-of-the-art performance in both link and conversation prediction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源